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PREFACE

In recent years, automatic control systems have been rapidly advancing

in importance in all fields of engineering. The applications of control

‘systems cover a very wide scope, ranging from the design of precision

control devices such as delicate instruments used for inertial guidance to

the design of massive equipment such as that used for controlling the

manufacture of steel or other industrial processes. New applications for
automatic controls are being continually discovered.

This text is the outgrowth of the notes developed by the author to teach
control engineering at the University of Notre Dame. The author has
endeavored to give the principles a thorough presentation and yet make
them clear and easy to understand. It is presupposed that the reader
has the general maturity and background of a third- or fourth-year
engineering student, but no previous training in control engineering.

Although the principles of feedback control systems are presented in
a manner which is appropriate to the interests of mechanical engineers,
this text has also been successfully used to teach students in other fields
of engineering. In addition, the author has taught night courses for
practicing engineers. In the light of their enthusiastic comments, it is
felt that this book will be of much value to the engineer in industry who
did not have the opportunity to take such a course while in college.

The basic principles and fundamental concepts of feedback control
systems are presented in the first portion (Chapters 1 through 10). The
latter portion correlates basic theory with the more practical aspects
‘involved in the design of control systems. Because the usual pattern
encountered is that new engineers are strong in theory but weak in
practice, it is felt that this latter portion will help to bridge the gap
between theory and practice.

In particular, the study of control engineering is begun by showing how
typical control systems may be represented by block diagrams. This is
accomplished by first demonstrating how to represent each component or
part of a system as a simple block diagram. Next, it is explained how
these individual diagrams may be connected to form the over-all block
diagram, just as the actual components are connected to form the com-
plete control system. Because actual control systems frequently contain

vii



viii PREFACE

nonlinear components, considerable emphasis is given to such com-
ponents. The preceding material is presented in the first three chapters. .
In the fourth chapter, it is shown that much important information con-
cerning the basic or inherent operating characteristics of a system may be
obtained from a knowledge of the steady-state behavior.

This introduction to control theory differs from the usual “black-box”
approach, in which the block diagram for a system is given outright.
This black-box approach permits introducing Laplace transforms and
other methods for system analysis at an earlier stage. However, it has
been the author’s experience that, if the student is first familiarized with
the physical significance of feedback controls, then he is better able to
appreciate the value of the more specialized techniques used in system
analysis, and thus arrives at a far deeper understanding.

In Chapters 5 through 10, the various methods and techniques used for
determining the performance of control systems are thoroughly described.
In particular, in Chapter 5 it is shown how linear differential equations
which deseribe the operation of control systems may be solved algebrai-
cally by the use of Laplace transforms. Chapter 6 explains how the roots
of the characteristic equation govern the transient response, and in Chap-
ter 7 it is shown how these roots may be ascertained by use of the root-
locus method. Application of the analog computer for simulating con-
trol systems is presented in Chapter 8. The use of frequency-response
techniques for evaluating dynamic performance is explained in Chapters
9 and 10.

More specialized considerations which arise in the design of hydraulic
systems, pneumatic systems, and electrical systems and in inertial
navigation are treated in Chapters 11 through 14. Chapter 15 presents
techniques which are applicable for the analysis of certain types of non-
linearities and provides a general introduction to the field of nonlinear
control systems. '

The author wishes to acknowledge the excellent suggestions of Profes-
sor Ferdinand Freudenstein, Columbia University; Professor John E.
Gibson, Purdue University; Professor Thomas J. Higgins, University of
Wisconsin; Dr. Kenneth W. Kohlmeyer, Sperry-Gyroscope Company;
Professor Richard M. Phelan, Cornell University; Professor John R.

Ragazzini, New York University; Professor John G. Truxal, Polytechnic
Institute of Brooklyn; and Mr. William E. Vannah, former editor of
Conirol Engineering.
* Appreciation is'expressed for the many fine comments of the author’s
former students who used the original notes from which this text has been
developed. Although it is not possible to acknowledge the contribution
of each student, particular recognition is due Paul W. Beiter, Frank
D’Souza, John Grace, William Howard, and Thomas McCarey.
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Sincere gratitude is extended for the encouragement and suggestions of
the author’s colleagues at the University of Notre Dame, especially to
Dr. M. J. Goglia, Dr. M. K. Newman, and Brother C. Albert Welsh,
FS.C, D.Sc. Appreciation is also expressed to Mrs. Ella Levee for her
typing of the many revisions of the notes from which this text has been
developed.

The author’s wife, Therese, has faithfully worked with him throughout
the development of this text. She has made innumerable suggestions
and has been a constant source of encouragement.

Francis H. Raven
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CHAPTER 1

INTRODUCTION TO AUTOMATIC CONTROLS

1.1. Historical Development. Early man had to rely upon his own
brute strength or that of beasts of burden to supply energy for doing
work. By use of simple mechanical devices such as wheels and levers,
he accomplished such feats as the building of high pyramids and Roman
‘highways and aqueducts. He first supplemented his energy and that of
beasts by utilizing power from natural sources such as the wind for
powering sailing vessels and windmills, and waterfalls for turning water
wheels. The invention of the steam engine was a milestone in man’s
progress because it provided him with useful power that he could harness
at will. Since then, man has devised many different means for obtaining
abundant and convenient sources of energy. Engineering effort is
primarily concerned with the practical applications of using power to
serve the purposes of man. That is, the engineer designs and develops
machines and equipment by which man can utilize power.

Early machines and equipment had controls which were predominantly
of a manual nature, and the adjustments had to be reset frequently in
order that the desired output or performance could be maintained. The
design of newer equipment with greater usefulness and capabilities is
bringing about an ever-increasing growth in the development of control
equipment. The reason is twofold. First, automatic_controls relieve
man of many monotonous activities so that he can devote his abilities

to other endeavors. Second, modern complex controls can perform
functions which are beyond the physical abilities of man to duplicate.
For example, an elaborate automatic control system operates the engine
of a modern jet airplane with only a minimum amount of the pilot’s
attention so that he is free to maneuver and fly his airplane.

It is interesting to note that, as the applications and uses for controls
have increased, so also have the demands upon the performance of these
systems increased. There is no doubt that a major concern of the engi-
neer today, and even more so in the future, is, and will be, the design
and development of automatic control systems.

1.2. Feedback Control Systems. The controlling of temperature is

a typical example of a feedback control system. The position of the
1




2 AUTOMATIC CONTROL ENGINEERING

temperature dial sets the desired temperature (i.e., the reference input).
The actual temperature of the system is the controlled variable (ie.,
the quantity which 1s being controlled). The thermogtat, or comparator,
compares the act i i in order
to measure the error. This error signal is the actuating signal, which
15 Then sent to the heating units in order to correct the temperature.
For example, if the actual temperature is less than the desired tempera-
ture, the actuating signal causes the control elements to supply more
heat. If there is no error, the control elements do not change the amount
of heat which is being supplied. When the actual temperature is greater
than the desired value, then the actuating signal calls for a decrease in
the amount of heat.

For a system to be classified as a feedback control system, it is neces-
sary that the controlled variable be fed back and compared with the
reference input. In addition, the resulting error signal must actuate
Thecomtrol elements to change the output so as to minimize thg error.
A feedback control system is also called a closed-loop system. Any sys-
tem which Incorporates a thermostat to contror temperature is a feedback,
or closed-loop, system. Well-known examples are electric frying pans,
irons, refrigerators, and household furnaces with thermostatic control.

For speed control systems, the device which subtracts the feedback
signal from the reference input (i.e., the comparator) is usually a centrifu-
gal governor. The governor serves the same purpose that the thermo-
stat does for temperature controls. That is, the governor compares
the actual speed which is to be controlled with the desired value and
measures the error. This error signal then actuates the control ele-
ments. The same basic concepts apply to all types of feedback control
systems, whether the controlled variable be temperature, speed, pres-
sure, flow, position, force, torque, or any other physical quantity.

In an open-loop system there is no comparison of the controlled vari-
able with the desired input. Each setting of the input determines a fixed
operating position for fhe control elements. For example, for a given
input temperature setting, the heating units are positioned to supply
heat at a fixed rate. (Note that there is no comparator, or thermostat,
which measures the error and resets the heating units.) he disadvantage
of such a system is illustrated by the fact that, for a fixed rate ‘of heat:
supplied to a house, the inside temperature varies appreciably with
changes in the outside temperafure. Thus, for a given set mmput to an
open-loop system, there may be a big variation of the controlled variable
depending on the ambient temperature.

In this example, the ambient tempeﬁt’ure is an external disturbance.
By an external disturbance is meant something external to the system
which acts to change or disturb the controlled m;’or

2




INTRODUCTION TO AUTOMATIC CONTROLS 3

advantage of employing feedback control is that, because of the com-
parator, the actuating signal continually changes so that the controlled
variable tends to become equal to the reference input regardless of the

external disturbance. Another consideration is that with feedback one

cau@mWWlem
better control than is possible Sing very expensive—eemponents
in an open-loop system. 1he primary effort of this text will be devoted
o Tecdback control systems.

1.3. System Representation. The mathematical relationships of con-
trol systems are usually represented by block diagrams. These diagrams
have the advantage of indicating more realistically the actual processes
which are taking place, as opposed to a purely abstract mathematical
representation. In addition, it is easy to form the over-all block diagram
for an entire system by merely combining the block diagrams for each
-component or part of the system.

A comparator subtracts the feedback signal from the reference input
r. ¥or the case in which the controlled variable ¢ 18 fed back directly”

&M e

-T e b—os

[+

F16. 1.1. Block diagram of a comparator. Fia. 1.2. Block diagram of the control
elements.

(i.e., for unity-feedback systems), the signal coming from the comparator
is r — ¢, which is equal to the actuating signal e. The mathematical
relationship for this operation is

=r—c (1.1)

A_circle is the symbol which is used to indicate a summing operation,
as is illustrated in Fig. 1.1. The arrowheads pointing toward the circle
indicate input quantities, while the arrowhead leading away signifies
the output. The sign at each input arrowhead indicates whether the
quantity is to be added or subtracted.

The relationship between the actuating signal e, which enters the
control eleménts, and the controlled variable ¢, which is the output of
the control, is expressed by the equation

¢ = G(p)e (1.2)

where G(p) represents the operation of the control elements. In Chaps.
2 and 3, it is shown how the actual values of G(p) for specific control
systems are obtained. The block-diagram representation for the preced-
_ing equation is shown in Fig. 1.2, A box is the symbol for multiplica-
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tion. In this case, the input quantity e is multiplied by the function in
the box G(p) to obtain the output ¢. With circles indicating summing
points and boxes, or blocks, indicating multiplication, any linear mathe-
matical expression may be represented by block-diagram notation.

The complete block diagram for an elementary unity-feedback control
system is obtained by combining Figs. 1.1 and 1.2 to yield Fig. 1.3. This

Reference Actuating Controlled
input signal variable

r N e Gip) ud

.
T Unity feedback

F1a. 1.3. Block diagram of an elementary unity-feedback control system.

Y

diagram shows the controlled variable ¢ being fed back to the summing
point, where it is compared with the reference input r. This diagram
pictorially shows why a feedback control system is also called a closed-
loop system.

When the controlled variable is fed back to the comparator, it is
usually necessary to convert the form of the controlled variable to a
form that is suitable for the comparator. For example, in a temperature

Feedforward
Reference Actuating  elements Controlled
input signal variable
r ;- N\ e > G(p) c _

b Feedback

elements

Feedback
signal Hip)

Fia. 1.4. Block diagram of an elementary feedback control system.

control system the controlled temperature is generally converted to a
proportional force or position for use in the comparator. This conversion
is accomplished by feedback elements H(p). The block-diagram repre-
sentation for this more general case of a feedback control system is shown
in Fig. 1.4. The signal which is fed back is

b = H(p)e (1.3)

The elements represented by H(p) are called the feedback elements
because they are located in the feedback portion of the control. The
control elements represented by G(p) are the feedforward elements
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because of their location in the feedforward portion of the loop. The
actuating signal e is now r — b. This actuating signal e is a measure or
indication of the error.

The term ‘“‘feedback control system” is a general term which applies
to any system in which the controlled variable is measured and fed back
to be compared with the reference input. The terms “servomechanism”
and “regulator” are distinguished as follows: A servomechanism is a
particular type of feedback control system in which the controlled vari-
able is a mechanical position (e.g., the angular position of a shaft). A
regulator is distinguished as a feedback control system in which the
reference input, although adjustable, is held fixed, or constant, for long
periods of time (e.g., most temperature controllers).

_ oPaN-LooP EUNCTIONS (Pnoovcrsr) W
= 1+ cLoscp-oe? FunT oS (p[p oD UCT&)




CHAPTER 2

REPRESENTATION OF CONTROL COMPONENTS

2.1. General. To investigate the performance of control systems, it is
necessary to obtain the mathematical relationship G(p) relating the
controlled variable ¢ and the actuating signal e of the feedforward ele-
ments. This is accomplished by first obtaining the mathematical repre-
sentation for each component between the actuating signal and the
controlled variable and then expressing each of these equations as a

block diagram. The combination of
o Freelength ———— 410 block diagrams for each component
yields the desired representation for
G(p). The value of H(p) is obtained
by applying this same technique to the
components in the feedback portion of

the control.
] l Solid J The quantity G(p) could be obtained
height by writing the mathematical equa-

tion describing the operation of each
component between e and ¢ and then
combining these individual equations
algebraically to obtain the over-all rela-
X tionship between eand ¢. - However, for
(a) all but the simplest systems, this proce-

dure proves cumbersome because of the

AF;
Slope =K = X

Pl
|

5 X interaction between the various compo-
—_— /K }p—> A .

nentsin a typical control system. Inad-

(b) dition, the block-diagram method gives

one a better understanding of the system

because of its visual representation.
The obtaining of block diagrams for typical elements used in control

devices is illustrated in this chapter. In the next chapter, it is shown

how these individual diagrams are combined to form entire control

systems. .
2.2. Translational Mechanical Components. The load-deflection char-

acteristics for a mechanical spring are shown in Fig. 2,1a. The spring

6

Fia. 2.1. Spring characteristics.
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force F, required to compress a spring X in. from its free length is given
by the equation
F, = KX @.1)

" where K, the spring rate, is a constant which is equal to the slope of the
curve of the load F, versus deflection X, The input to a spring is usually
the force F,, and the output is the deflection X, so that the block-diagram
representation for Eq. (2.1) is as shown in Fig. 2.1b.

For a viscous damper as illustrated in Fig. 2.2a, the force F; required
to move one end of the dashpot at a velocity V relative to the other

r—>X

5 5 X
L —> 1/Cp > 3E, %
Z —_t 5 1/Mp? |——
(a) (b)
F1a. 2.2. Linear viscous damper. Fig. 2.3. Acceleration of a mass.

end is equal to the product of the damping coefficient C and the velocity.
That is,

ax
Fd=CV—C—(E

The substitution of the operator symbol p = d/dt into the preceding

expression yields
Fq = CpX 2.2)

With the force F; as the input and the displacement X as the output, the
block-diagram representation for Eq. (2.2) is shown in Fig. 2.2b.

By Newton’s first law of motion, it follows that the summation of the
external forces =F, acting on a mass is equal to the product of the mass
and acceleration,

- MA =MEX - upe
EF,—MA—Mdtz = MpX

The displacement X is given by the A D S B
equation - | Mp?+CpK |
(b) -

1 o

X = 315 2 Foo @3 Tw

This is represented diagrammati- gilf;tzi;t.smes mass-spring-damper com-
cally in Fig. 2.3. L

For the mass-spring-damper combination shown in Fig. 2.4a, the

spring force and damper force are opposed -to, or resist, the motion

caused by the applied load F. The summation of the forces acting on.
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the mass is S T
2ZF.=F+ Mg~ F, — F; = Mp*X

or F=Mp*+ Cp+ K)X — My 24)
For control work, it is often more convenient to make measurements
with respect to some initial or reference operating point. A lower-case
letter is used to designate the variation or change in displacement z
from the reference position X; so that z = X — X:. Because X; is a
constant, then pX = p(X; + z) = pz and p*X = p*x. As would be
expected, velocity and acceleration are independent of the reference posi-
tion from which displacement is measured. Equation (2.4) may be
written in the form )

F=(Mp*+ Cp+ K)z+ KX: — My

When the system is at rest or equilibrium at the reference operating
point (i.e., when p?z = pz = z = 0), then the value of the applied force
is KX; — Mg. Substitution of F; = KX; — Mg, which is a constant
in the preceding equation, gives

F—-F,=f=Mp*+Cp+ K (2.5)

where f is the change in applied force from the value F; required for
equilibrium at the reference operating point. Although z and f are
measured from the reference operating point, Eq. (2.5) is a general equa-
tion describing the dynamic behavior of the system. If is not necessary
that the system be initially at this reference operating point or that the
system be initially at rest. As is later explained, it is usually much
easier to obtain the equation of operation with respect to some conven-
ient reference point rather than using absolute values. When absolute
values are desired, it is an easy matter to add the reference value to
the variation. The block diagram for Eq. (2.5) is shown in Fig. 2.4b.
2.3. Operational Notation. In the preceding section, it was found
convenient to use the Heaviside operational notation
=@
The operator p* is a symbol which indicates that certain operations of

differentiation are to be performed. For example, if x and y are functions
of time, then

r=123,...,n (2.6)

m+w=§@+w=%+%=m+w

Thus, the operator p obeys the distributive law, ie.,
piz+y) =pr+py 2.7)

and may be factored as though it were an algebraic quantity.
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It may also be shown that, if @ and b are constants, then
®+ap Fha < @+ a (g—t + b)x |
=(§t+a)(4’f+bx) |
dt( + bz ) +a (d__:c+ bz;)
dt’ z 4+ (a -+ b) dt+abz
= [p* + (a + b)p + ablz

Hence, it follows that the commutative law also holds, i.e.,

@+ a)@+bz=(+bp@+az
= [p* + (a + b)p + ablz 2.8)

Similarly, it may be shown that the law of exponents holds,
prpmz = p""""x (29)

where n and m are any two postiive integers.
The meaning of the reciprocal of p is obtained as follows: From
calculus

2(t) = [lpf®)dt = @) + C (2.10)

where pf(t) = (d/dt)f(t) and C is the constant of integration. Differentia-
tion of the preceding expression with respect to time yields ’

pz(t) = pf(?)
Solving the preeeding expression for z(f) gives
1
z(t) = » ipf(®1 (2.11)
Comparison of Egs. (2.10) and (2.11) shows that
1
Lioro) = [ wro1a =50 + @.12)
Therefore, the symbol 1/p indicates integration.’
- The -operator p obeys all algebraic laws except for the following case,
which arises in the cancellation of operators: This can be shown by writ-

ing Eq. (2.10) in the form

20 = 2 B0O1 = 10 + C= 1) = 1) + 200 = O + 260 @13
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where C is obtained by evaluating Eq. (2.10) at the initial condition, ie,
C = [2() = SOt = 2(t) — f(ta)

The cancellation of operators gives the erroneous result
z(t) = %pf(t) = f(t) invalid result (2.14)
In general, it may also be shown that

z—;l,,—. p(t) = pmf(0) @.15)

The algebraic cancellation of the operator in Eq. (2.14) did not regard
the constant of integration that arises from the integration indicated
by Eq. (2.12). Thus, it is not possible to cancel operators when integra-
tion is the last operation to be performed unless there is no constant of
integration, as is the case when the initial conditions are all zero.
Because no initial-condition terms arise from the differentiation
process, it does follow that

L p" pi,,,f(t) = p~f(t) (2.16)

Thus, one may cancel operators when differentiating an integral, but
not when integrating a differential unless the initial conditions are zero.
In deriving the equations for control systems, one seldom has occasion
for canceling operators, _

In this text, the Heaviside operator notation is employed as an aid in
obtaining the differential equation for control components and systems.
In Chap. 5, it is shown how these differential equations may be solved
algebraically by the Laplace transformation technique. These differen-
tial equations could be solved by use of Heaviside operational methods,~3
but this is considerably more tedious and complicated than the Laplace
transform method.

2.4. Rotational Mechanical Components. A torsional spring is char-
acterized by the equation

T, = K. (2.17)

where T, = torque tending to twist spring
- K, = torsional spring rate
6 = angular displacement of spring

tH. 8. Carslaw and J. C. Jaeger, “Operational Methods in Applied Mathematics,”
Oxford University Press, New York, 1941.

*N. W. McLachlan, “Complex Variable and Operational Caleulus,” Cambridge
University Press, New York, 1953.

*G. W. Carter, “The Simple Calculation of Electrical Transients,” The Macmillan
Company, New York, 1945. ’ -
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A well-known example of a torsional spring is a shaft as shown in Fig.
2.5. The right end of the shaft is displaced an angle 8 with respect to
the left end because of the twisting torque T,. For a straight shaft, the
. torsional spring rate is
DG
32L
where G = modulus of elasticity in shear
D = diameter of shaft
L = length of shaft
The torque Ty required to overcome viscous friction of a rotating member
1s

K, = (2.18)

dé

Ti= Cuw = C, 5 = Cpd (2.19)

coefficient of viscous fric-
tion

where C,

« = angular velocity
T T3
iy
K‘”’f ﬂﬂﬂﬂﬂ ‘é) T 1 0
\ Jp!+Cvp+Ks
l L J (b)

Fia. 2.5. Shaft acting as a torsional spring. Fic. 2.6, Torsional inertia-spring-
damper combination.

A disk rotating in a viscous medium and supported by a shaft is shown
in Fig. 2.6a. The applied torque tending to rotate the disk is 7. The
shaft torque and viscous friction oppose the motion so that

2T, =T —-T, — Ta = Ja =-Jp*0 (2.20)

where 2T, is the summation of external torques acting on the disk.
The substitution of 7T, from Eq. (2.17) and T, from Eq. (2.19) into
Eq. (2.20) yields

: = (Jp* + C.p + KJ)0 (2.21)

The block-diagram representation for this system is shown in Fig. 2.6b.

2.5. Electrical Components. The resistor, inductor, and capacitor are
the three basic components of electrical circuits. The equation for the
voltage drop Er‘across a resistor is

Er = RI - (2.22)

where R is the resistance in ohms and [ is the current ﬂowmg through
the resistor in amperes.
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For an inductor, the voltage drop E;, is given by the equation

Br=LY 11 2.23)
where L is the inductance in henrys.
Similarly, the voltage drop E¢ across a capacitor is

1
Ec = Cp 1 (2.24)

where C is the capacitance in farads.

The diagrammatic representations of Eqgs. (2.22) to (2.24) are shown
in Fig. 2.7,

ver B e B o]

c

E E I E I
£, 1/R —I-> = 20N 1/Lp |—— LN Cp >-

Fia. 2.7. Representation for resistor, inductor, and capacitor.

E

E, Ep f E;
+ " =
N'
= v R c
(a)

E 1 Q
Lp?+Rp+1/C
(b)

Fra. 2.8. RLC series circuit.

For the series RLC circuit shown in Fig. 2.8, the total voltage drop
E is the sum of the voltage drop across the inductor E,, plus that across
the resistor Er and that across the capacitor Ee.

E=EL+ER+EC=<Lp+R+CTlp)I (2.25)
The charge Q is the time integral of the current, that is, @ = (1/p)I.

By noting that Lpl = Lp*I/p) = Lp*Q, RI = Rp(I/p) = RpQ,
1/C (I/p) = (1/C)Q, Eq. (2.25) becomes
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1 |
E= (Lzﬂ +Rp+ 5) 0 (2.26)

The over-all block-diagram representation for this RLC circuit is
shown in Fig. 2.8b. .

9.6. Series and Parallel Combination of Elements. Often, many
elements are connected in either a series or a parallel arrangement.
Much simplification in arriving at the equation for such systems is
afforded by the use of the theorem for series and the theorem for parallel
combinations.

Series Electrical Circuits. A general series circuit is shown in Fig.
2.9a. In a series circuit, the total voltage drop E 1s the sum of the individual

1 E 1

st
— Ll L2< Rl Rz Cl Cz
(a)
E I

1/Z |—

(b)

F1c. 2.9. General series circuit.

& voltage drops across each element and the same current I flows through each

element. The equation for the summation of the voltage drops is

E=(L1p+L2p+R1+R2+Ciw+CLﬂ,)I=ZI @.27)

Thus, the equivalent impedence Z for elements in series is
1 1
Z—L1P+L2P+R1+Ra+bl—p+c—”; (2.28)

so that the equivalent representation is shown in Fig. 2.9b.

Parallel Elecirical Circust. A general combination of electrical elements
in parallel is shown in Fig. 2.10a. The distinguishing features of a
parallel arrangement are that the voltage drop E across each element is the
same, and the total current I flowing into the system 1s the sum of the cur-
rents flowing through each element. Thus

E

_E , E_ E_E E | E
I= Lip + Lep + R, + R, + 1/Cp + 1/Csp (2:29)

w— 1 ——1
o E= e F VR FUR T o T e
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| The eqﬁivalent impedence Z for elements in parallel is

1
2 = Lo ¥ 1/ T 1/R: ¥ /R ¥ Cp T Cop

so that the equivalent representation is shown in Fig. 2.10b.

Tlustrative Example 1. For the circuit shown in Fig, 2.11, let it be
desired to determine the equation relating the output voltage E, to the
input voltage E,.

(2.30)

I—

TEE R

(a)

(e ]

—_— 1/Z

(5)

F1G. 2.10. General parallel circuit.

+T | T+ .
_I\ E, R,(1+R,C,p) E,

R >
E, 1 R, ’12 R+R,+R,B,Cp

Fi16. 2.11. Electrical circuit.

sOLUTION. The parallel combination of R; and C, is in series with R,
so that the total impedance Z is

_ _ 1 _ R,
Z=7Z+R: = R+ Cp + R; = T+ RiCp + R: .(2'31)
The voltage E, is given by the equation
. _ _ RBi+ Ry + R\R:Cip
E,=ZI = T RCp (2.32)
and similarly E, is
E2 = R2I (2.33)

The substitution of I from Eq. (2.32) into Eq. (2.33) yields the desired
answer '

_ R2(1 + Rlclp) :
E, R+ R+ Ry\R,Cyp i (2.34)
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Series Mechanical Elements. A series arrangement of linear mechanical
elements is shown in Fig. 2.12a. In general, it is better to use the
equivalent ‘“grounded-chair’”’ representation for a mass, as shown in
. Fig. 2.12b, rather than the more common representation of Fig. 2.12a.
The fact that the mass is in series with the other elements is more readily

ol B U

—_— 1YZ —— o 2K

{c)

Fi16. 2.12. Mechanical elements in series.

seen from Fig. 2.12b than from Fig. 2.12a. In determining inertia force,
the acceleration of a mass is always taken with respect to the earth.
Thus, providing the grounded chair to indicate motion relative to ground
is a more justifiable representation than Fig. 2.12¢, which shows better
the actual physical arrangement of the elements in the system. For
series mechanical elements, the force f is equal to the summation of the
Sorces acting on each tndividual compo-

nent, and each element undergoes the f
same displacement. Thus
. T g= =X
f=(K1+K2+Clp K,
+ Cep + Mp¥zx = Zx (2.35)
. where z and f are measured from a K, f .

convenient reference operating point. > Uz '

The equivalent impe for mechan- C 5)
ical elements 1n series is
series

c, L
+ Cap + Mp\ (2.36) @ 7:];7

Fic. 2.13. Mechanical elements in
parallel.

The equivalent representation for this

Parallel Mechanical Elements. A parallel combination of mechanical
elements is shown in Fig. 2.13a. For parallel elements, the force f is
- lransmitied through each element. In addition, the deflection x is seen to
: be the sum of the individual deflections of each element. Thus

system is shown in Fig. 2.12¢. L —1




"
ey

I
—
311 - a1
Cb-I/KZ
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VAN IR SN B 2.3
z X, + X, -+ Cp + Cop (2.37)
or  f= 1 2= 7o
1/K:+ 1/K, 4+ 1/Cyp + 1/Csp
The equivalent impedance for mechanical elements in parallel is
: 1

N Z = R ¥ /K. 1/Cp ¥ 1/Cop @.38)

The equivalent representation is shown in Fig. 2.13b,

I
—

L,=1/K, L,=1/K,
Q0

E L0 ——w—] E
_l— L=M R=C, 3 _L R=1/C,

(c) = (d)
F1G. 2.14. Mechanical system.

A necessary condition for parallel elements is that the force be trans-
mitted through each element. Springs and dampers satisfy this con-
dition because the force is the same on both sides. However, this is not
the case for a mass such as that shown in Fig. 2.14a, because the dif-
ference in forces acting on both sides of a mass is utilized in acceleration.
Thus, a mass located between other elements cannot be in parallel with
them. A mass can be in parallel only if it is the last element, as shown

in Fig. 2.15. For this system, the displacement z is

$=(x—y)+(y—2)+z=(%+—c1,—p+ﬂlp—,)f (2.39)
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Parallel and series rules for rotational mechanical components may
also be developed by extending the preceding techniques.!-2

Illustrative Ezample 2. For the mass-spring-damper combination
shown in Fig. 2.14a, determine the equation relating f and z, the equation
relating f and y, and the equation
relating 2 and . x

soLUTION. The first step is to  f r K
draw the equivalent grounded-chair
gystem, in which the motion of the ”
mass with respect to ground is clearly 6. 2.15. Parallel mass-spring-damper
indicated as shown in Fig. 2.14b. combination.
The spring K, is in parallel with the series combination of M, K,, and C..

Thus —
= — 1 _ K.Z, '
f=2Zz R+ 1/Z2x KT 7, % (2.40)
or f f K (2.41)

Z, Mp ¥ Cp+ K. Mp ¥ Cop + Ki ¥ Ko
where Zy=Mp*+ Cp + K,

- The force f is transmitted through the spring K, and acts upon the series
combination of M, K,, and C,. Thus, the equation of motion for this
part of the system which relates f and y is

f - 4
Mp+Cp+ K, Y 242)
Equating (2.41) and (2.42) yields the desired relationship between z and
y. That is,
K,
JWI)2 + Cip + K1 + K2

- Analogies. The equation of operation for the series mechamcal
.. system of Fig. 2.4a is given by Eq. (2.5), and the equation for the series
. electrical circuit of Fig. 2.8a is given by Eq. (2.26). Comparison of
' corresponding terms in Eqs. (2.5) and (2.26) shows that the differential
:equation of operation for each system has the same form. The terms
¢ which occupy corresponding positions are called analogous quantities.
‘This particular analogy is referred to as the force-voltage analogy. The
¢ analogous quantities for a force-voltage analogy are shown in Table 2.1,
k¥ .. The total force acting on a group of mechanical elements in series is
| equal to the sum of the forces exerted on each element. Similarly, the

(2.43)

f-  1H. F. Olson, “Dynamical Analogies,” 2d ed., D. Van Nostrand Company, Inc.,
. Princeton, N.J., 1958.

. *R. L. Sutherland “Engineering Systems Analysis,”” Addison-Wesley Pubhshmg
¢ Company, Reading, Mass., 1958.
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TaBLE 2.1. ANALOGOUS QUANTITIES IN A FORCE-VOLTAGE ANALOGY

Translational | Force | Mass | Viscous Spring Displacement | Velocity
" mechanical damping constant
system coefficient i
f M C K z % =pz
Electrical Volt- | In- Resistance | Reciprocal of | Charge Current
system age duct- capacitance
ance
1
E L R ° Q I=7pQ

total voltage drop across a group of electrical elements in series is equal
to the sum of the voltage drops across each element. Thus, in con-
structing a force-voltage analogy, series mechanical elements are replaced
by analogous series electrical elements. .

For parallel mechanical elements, the force acting on each element is
the same, and for parallel electrical elements the voltage drop across each
element is the same. Thus, in a force-voltage analogy, parallel mechani-
cal elements should be replaced by equivalent electrical elements in
parallel.

Another type of analogy which is commonly employed is the force-
current analogy. To construct a force-current analog, it should first be
noted that the total current flowing through a group of electrical elements
in parallel is the sum of the currents in each element. This is analogous
to the fact that the fotal force acting on a group of mechanical elements in
series is the sum of the forces acting on each element. Thus, to construct
a force-current analog, series mechanical elements must be replaced by
parallel electrical elements. Similarly, in a force-current analogy, it
may be shown that parallel mechanical elements should be replaced by
series electrical elements.

Analogous quantities for a force-current analogy may be determined by
comparing the equation of operation for the parallel mechanical system
of Fig. 2.15 with that for the series electrical system of Fig. 2.8a. The
equation of operation for the parallel mechanical system of Fig. 2.15 is
given by Eq. (2.39). Multiplication of both sides of Eq. (2.39) by p gives

. _(p 1 1 i
t=(B+g+an)! - (@a4)

The operation of the series electrical circuit of Fig. 2.8a is described by
Eq. (2.25), which has the same form as Eq. (2.44). Comparison of
corresponding terms in Eqs. (2.25) and (2.44) yields the analogous
quantities for a force-current analog that are shown in Table 2.2.
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TaBLE 2.2. ANALOGOUS QUANTITIES IN A FORCE-CURRENT ANALOGY

- Translational Force | Velocity | Spring Damping Mass
¥ mechanical constant coefficient

f gystem
f & K C M

Electrical gystem | Current | Voltage | Reciprocal of | Reciprocal of | Capacitance

inductance resistance
1 1

I E 7 B (o]

. Illustrative Example 3. Let it be desired to determine the electrical
i analogy for the mechanical system of Fig. 2.14b by using (a) analogous
E force-voltage terms, (b) analogous force-current terms.

. soLuTioN. (a) The electrical force-voltage analogy for the mechanical
4 system of Fig. 2.14b is shown in Fig. 2.14c. Note that the capacitor C
f is in parallel with the series combination of L, C%, and R, just as the
f spring K, of Fig. 2.14b is in parallel with the series combination of M, Ko,
I;and C,. The equation of operation for the electrical circuit of Fig.
e 2.14c is

E=2l=— L. 1
..l..
: 1/C.p  Lp+1/Cp + R
- o Gy +Rp+1/C) I
C.ClLp* + Rp + (1/C. + 1/C)] p
1/C,
O P E Ry T1/0 - I ¥ R+ /C. 7 i/0y ¢ @419

Comparison of corresponding terms in Egs. (2.41) and (2.41a) verifies the
ree-voltage analogies given in Table 2.1.

(b) The resulting force-current analogy for Fig. 2.14b is shown in
ig. 2.14d. In Fig. 2.14d, it is to be noted that the inductor L, is in
ries with the parallel combination of C,, L, and R, whereas in Fig.
14b the spring K is in parallel with the series combination of M, Ko,
d C.. The equation of operation for the electrical circuit of Fig.

1 ,,
B=2i= (L"’ + O F /L T 1/R) d

7= RL,[C.p® + (1/R)p + 1/Ly] E
RLLAC.p: + (1/R)p + (/L1 + 1/La)] p
I 1/L, E

CorF (/Rp+1/L. Cop’ + Q/Rp + Q/Li + /L) p
(2.41b)
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the z coordinate of Fig. 2.14b is
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Comparison of corresponding terms in Egs. (2.41) an (2.41b) verifies
the force-current analogies given in Table 2.2. In the force-current
analogy, velocity is analogous to voltage, and thus displadement is anal-
ogous to the integral of voltage.

Comparison of corresponding terms in Egs. (2.5) and (2.21) shows that
a torque-force analogy may be developed in which series translational
mechanical elements are replaced by series rotational elements. Simi-
larly, parallel translational elements should be replaced by parallel
rotational elements. Analogies may be developed for other phenomena
such as fluid flow, thermal processes, ete.

A major use for analogs is that sometimes it is easier to study experi-
mentally one type of system rather than another. For example, it may
be easier to change a resistance rather than the coefficient of viscous
friction. Whenever possible, it is best to work with the system directly
rather than to consider the operation of an analogous system. This
eliminates the chance for error in construction of the analogy. Also,
when carried far enough, analogies usually break down because things
which are physically possible for one component may be impossible for
the analogous component.

Degrees of Freedom. By degrees of freedom is meant the number of
coordinates required to specify the position of all the elements in a
mechanical system. Thus, the system shown in Fig. 2.14b has two
degrees of freedom, while that shown in Fig. 2.15 has three degrees of
freedom.

Rather than using the series and parallel laws, an alternate method of
determining the equation of operation of mechanical systems is to write
the force balance at each coordinate. For example, the force equation at

K@-p=5 (2.45)

The compression of the spring K, is z — Y, and as z increases, so does the
spring force, but as y increases, the spring force decreases. The force

balance at the y coordinate is

Ki(z —y) = (K. + Cop + Mp?y- (2.46)
The two preceding force equations may be written in the form

le —Kly =f

Kz — (Ky+ Ko+ Cop + MpYy = 0 (2.47)

These two equations may be solved simultaneously to’yield any of the
desired relationships between z, y, or f. For example, solving for y gives




/
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K1 I '
VTR —K;
K, —(Ki+ K:+ Cop + Mp?)

K.f _ f
K\{(Ki+ Ks 4+ Csp + Mp?) — Ki)] Ky+ Cop + Mp?

Suppose that it is desired to consider y positive for upward motion
rather than for downward motion. (Downward motion is shown in
Fig. 2.14b.) This reversal would change the sign of each y term in Egs.
(2.45) and (2.46), which would change the sign of y in the resultant
expression given by Eq. (2.48). In
effect, reversing the positive sense of . r
a coordinate merely changes its sign.

In applying the series or parallel - -=
laws to mechanical elements, care
- must be exercised to take the posi- —
E  tive sense of motion of each coordi- ~TE
. nate (this is indicated by the arrow | |=
[ ateach coordinate) in the same direc-

b tion as that of the applied force. It

is a simple matter to later change Y
j the positive sense of a coordinate
. by merely changing the sign of the
L -corresponding term in the derived
. equation.

.
2.7. Comparators for Rotational or %
7
7

(2.48)

L

} Planet
< carrier

N

I

f Linear Motions. When the refer-
b ence input and the feedback signal 0, v
j are each represented by the angular —{{{—

I

;LE

[T

AT

B position of a shaft, then a differential N 7
) gear train may be used to measure

g the difference. A schematic repre-

f sentation of such a gear train is

t shown in Fig. 2.16, and its equation

k¥ of operation is

- 0, — 0, '
0 = —a (2.49) Fic. 2.16. Differential gear train.

where 6, is the angular position of the planet carrier or cage which is a
§ measure of the error, the shaft position 6, is the reference input, and 6, is
 the feedback angular position. Such a device might be used as the com-
b parator of a system used for the remote control of the angular position



22 AUTOMATIC CONTROL ENGINEERING

0. of a large mass such as a radar tracking antenna. The use of two
differentials, one for azimuth and one for elevation, is required for
orientation of an object in space.

For a typical control system, the planet carrier is connected to a
power-amplifying device such that when 4, is positive a torque is trans-
mitted to increase 6, and when 6, is negative a torque is applied to decrease
0.. When 0, is zero, then the value of 6, remains constant. For this
case, it is seen from Eq. (2.49) that 6, = 4,.

To understand the operation of this device better, suppose initially
that 6. = 0 and also 6. = 6, = 0. If the reference input position is
instantaneously increased by 10°, then from Eq. (2.49) it follows that 6,
changes by 5°.  This in turn causes a torque to be transmitted to increase
6.. As 0. increases, the planet carrier gradually returns to its initial
position. Thus, when 6. = 6, = 10°, then 4, is again zero.

For subtracting linear motions, one could use a rack and pinion to
convert the linear motions to rotations and then use a differential gear
train. However, the device shown in Fig. 2.17 subtracts linear motions
directly. With the position of the lower rack x. held fixed, then it is
seen that the motion z, is one-half the motion of the upper rack z,.
Similarly, with the upper rack held fixed, the motion z, is one-half that
of x.. However, it should be noticed that z, decreases as z. increases.
Because it makes no difference whether the movements of z, and z, occur
at different times or simultaneously, the total movement of z, is that due
to a change in z, plus that due to a change in 2.. Thus the equation for
this mechanism is
Zr — Z,

5 (2.50)

Te =

It should be noted that changing the positive sense of motion for z. in
Fig. 2.17 changes the sign in front of z. in Eq. (2.50) so that a summing
device results.

2.8. Integrating Devices. In control systems, the error signal coming
from the comparator is often fed into an integrating device. The reason
for this is that because of friction, backlash, etc., the system might not
detect a very small error, but the integral of a small error continually
increases with time so that the system eventually detects it.

A device for integrating mechanically is shown in Fig. 2.18. This is
called a ball-and-disk type of integrator. A differential rotation d@ of
the input position 6 produces a linear motion r d§ which is transmitted
through the two balls to the output shaft of radius R and angular position
¢. The term r is the distance from the centerline of the input shaft to
the balls. The reason for the two balls is to ensure that pure rolling
exists between the elements even when the position r is being varied.
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There could not be pure rolling if there were only one ball. The dif-
ferential equation of operation for this device is

Rd¢ = rdo (2.51)

Because this is a continuously acting device, it sums up or integrates
all incremental motions. Thus, integration of the preceding expression
gives

1
¢ = ) / r dé (2.52)

The value of r is varied in proportion to the function that is to be
integrated. The application of this device to integrate an error signal is
demonstrated as follows: Let the distance r be varied in proportion to

2]

!‘— r Disk

P T ] - fod

7N 7N 3

[ [+) [¢) 7
X 7 ~ T S ——— 8
xe <l rt S
Fia. 2.17. Translational differential Fig. 2.18. Ball-and-disk integrator.

mechanism.

the error signal (r = C,e), and let the input shaft be driven at a constant
angular velocity w = d6/dt or df = w dt, so that Eq. (2.52) becomes

1 C
~ 2 / Ciew dt = %0 edt (2.53)

Thus the position ¢ of the output shaft is seen to be proportional to the
time integral of the error. A more thorough treatment of computing
mechanisms may be obtained by referring to other publications.’~3

A hydraulic valve-and-piston combination which in effect integrates
hydraulically is shown in Fig. 2.19a. The position of the valve is
designated by z, and the position of the large piston which moves the .
load is y. This type of valve is called a balanced valve because the
pressure forces acting on it are all balanced so that it requires little force

1 W. W. Soroka, “Analog Methods in Computation and Simulation,” McGraw-Hill
Book Company, Inc., 1954.

*G. W. Michalee, Survey and Evaluation: Analog Computing Mechanisms,
Machine Design, vol. 31, no. 6, pp. 157-179, Mar. 19, 1959.

sH. H. Mabie and ¥. W. Ocvirk, “Mechanisms and Dynamics of Machinery,”
pp. 175-194, John Wiley & Sons, Inc., New York, 1957.




24 AUTOMATIC CONTROL ENGINEERING

to change its position. When the valve is moved upward, the supply
pressure admits oil to the upper side of the piston and the fluid in the

lower side of the piston is returned to the drain, where it is recirculated

—

in the system through the pump. For the reverse process, the valve is
moved downward so that the supply pressure is connected to the bottom
side of the big piston. The upper side of this piston is connected to the
upper drain to permit return flow to the pump.

For a constant pressure drop across the valve, the rate of flow to the
piston is proportional to the area uncovered by the valve, which is seen
to be propo;tional to the position z. Thus

e
AN _ . = = ALY
- T C N g=Cx C evree (2.54)

where ¢ is the rate of flow through the valve into the piston chamber.

x C| y
—_—
Ap
(b)

(a)
Fra. 2.19. Hydraulic valve and piston.

This rate of flow ¢ into the piston chamber is equal to the rate of change
in volume of the chamber, which is equal to the piston velocity py times
the area A4, of the piston.

g = Aipy (2.55)
Equating the preceding expressions for q and solving for y gives
=~ A z (2.56)

The block-diagram representation for this hydraulic integrator is
shown in Fig. 2.19b.

2.9. Nonlinear Devices. In Fig. 2.20a is shown a mechanical linkage
which is used for obtaining the square of a number. The point B is the |
corner of the right-angle linkage (e« + 8 = 90°) and is constrained to
move in the vertical track. One leg of this right-angle linkage passes
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through the slider, which pivots at point A. The other leg of the linkage
must always pass through the slider at point C, which in turn is con-
strained to move in the horizontal track. Because of the geometry of
+ this device, triangles BOC and AOB will always be similar. Therefore

Yy X

NN
I

| >4

or (2.57)
where K is a constant.

Considering X as the input quantity, the position of point C and thus
Y, the output, will vary as the square of X. If the operation were
reversed so that ¥ were the input and X the output, this mechanism
would be a square-root device in which X = +/KY. Depending on

Aoo 8o 5'0/4'0 20 0

(b)

(a)

Fia. 2.20. (@) Mechanical squaring device; (b) skeletal representation of squaring
device.

which scale is used for the input, this device may be used for obtaining
squares or square roots, as is illustrated by the skelton diagram of Fig.
2.20b. The scale of this diagram is for the case in which K = 1.

For an equation to be linear, each variable term X, X», X5, . . . , Xa
in the equation for ¥ must be of the first power, and the contribution of
each term must be added independently as in the general linear equation
shown below.

Y = C1X1+CQX2+03X:_4+ R Y. (2.58)

In the following section, it is shown that, for small changes of the variable
terms, nonlinear relationships may be approximated by linear equations.
Linear methods of analysis may then be applied for the analysis of such
linearized systems. Additional methods for treating nonlinear phe-
nomena are discussed in Chap. 15.

- The most powerful methods of system analysis have been developed
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for linear control systems. By a linear control system is meant one in
which all the relationships between the variables can be expressed by
linear differential equations, usually with constant coefficients. The
reason why differential equations are obtained is that time is always a
variable in feedback control systems. For example, in controlling
temperature, the actuating signal causes a change in heat flow, and time
is required for this added heat to bring the temperature to its desired
value. In speed control systems, the actuating signal causes a change
in power of the prime mover, but it takes time to accelerate or decelerate
the engine to its desired speed. Similarly, in pressure control systems,
it takes time to bring the pressure in a chamber to some desired value.

(X, Y)

X

t

X >
Fi1a. 2.21. Graph of function ¥ = X2/K.

2.10. Linear Approximation of a Nonlinear Function. A plot of the
nonlinear relationship given by Eq. (2.57) is shown in Fig. 2.21. It is to
be noticed that, in the vicinity of the point of interest (X;,Y:), the non-
linear function ¥ = X?/K is closely approximated by the tangent to the
function. For example, consider a new operating point (X,Y) on the
curve of the nonlinear function. The abscissa X is seen to be displaced
a distance x from X;. This abscissa X intersects the nonlinear function
a vertical distance y + ¢ from Y;, and it intersects the tangent a distance
y from Y;. The equation for Y is

Y=Yi+ty+e=VY:i+y (2.59)

Lower-case letters indicate the variation of the capital-letter param-
eters from the point of interest or the reference point. From the
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geometry of Fig. 2.21, it is seen that the slope of the tangent line is
y a9y
r dX

The symbol |; means that the derivative is to be evaluated at the reference
dY _2X;

condition. Thus
_ _d [X?
V=TT @\ \E)LTTE

Substitution of y from Eq. (2.60) into Eq. (2.59) yields the following
linear approximation for Y:

= slope at point (X;,Y5)

i

z (2.60)

2X;
T

(2.61)
Illustrative Example 1. Effect a linear approximation for the equation
Y = X2 for values of X in the neighborhood of 10, and find the error
when using this approximation for X = 11. The reference values are
X; =10 and Y; = X2 = 100. Substitution of z = X — X; =1 and
K = 1 into Eq. (2.61) gives '
Y = 100 + %(1—01)—(2 = 120 (2.62)
The exact value is ¥ = X2 = 121; thus the error is 1 part in 121, less
than 1 per cent.
A more general procedure for obtaining a linear approximation is to
use the expression derived in calculus'? for approximating the incre-

" mental variation AY for a function ¥ = F(XX,, . . . , X,) of n inde-

pendent variables. That is,

Y Y aY
AY—-——*AX1+— AX2+ KI“1

X, ; aX. ; AX, (2.63)

By using the lower-case letters to represent variations from the reference
conditions, it follows that

Y- Y.=AY =y
Xl _X]‘- = AXI =
X2 - Xz‘ = AX2 = T2 (264)
Xn - Xm' = AXn = Tn

Thus, the general expression for obtaining a linear approximation for a
nonlinear function is

1 Louis A. Pipes, “Applied Mathematics for Engineers and Physicists,” 2d ed.,
MecGraw-Hill Book Company, Inc., New York, 1958.

21, 8. Sokolnikoff and E. S. Sokolnikoff, “Higher Mathematics for Engineers and
Physicists,” 2d ed., MeGraw-Hill Book Company, Inc., New York, 1941,
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y=Cwt1+ Coxa+ - - - + Cyz, (2.65)
aY oY
where 01 = EE ; 02 = m R ete.

Evaluation of these partial derivatives at the reference conditions yields
constants,

The application of the general expression Eq. (2.65) to the nonlinear
equation ¥ = (1/K)X? is effected as follows: The independent variable
is X, which corresponds to X, in the general equation. Thus ‘

c,=2Y =_a_(§f) - 2X| _2X%
90X s 0X\K )/ K |; K
From Eq. (2.65)
y=Cx = 2X‘x
K
The absolute value of Y is

This is the result obtained by the preceding geometric interpretation and
given by Eq. (2.61). -

The need for linearizing nonlinear relationships is frequently encoun-
tered in control engineering. For example, most mechanical speed
control systems incorporate a flyball governor for sensing the speed
error. 'This is a centrifugal device, so that a force is obtained which is
proportional to the square of the speed. In the design of hydraulic
equipment in which the working medium is an incompressible fluid, one
encounters the nonlinear equations which govern such fluid flow. Simi-
larly, the working medium for pneumatic equipment is air, whose flow is
described by nonlinear relationships.

Illustrative Example 2. Effect the linear approximation for P in the
equation of state PV = WRT. The reference conditions are P; = 100
Ib,/ft?, V; = 100 ft3, W; = 10/53.3 lb., and T; = 1000°R. Determine
the per cent error in using this approximation for P when V = 110 ft3,
T = 1200°R, and W remains the same. The constant R is 53.3
ft-1b;/1b./°R.

sSoLUTION. From the equation of state and the fact that W remains
constant, it is seen that P is a function of the independent variables T
and V,or P = F(T,V). Application of Eq. (2.65) to obtain the variation
p of the pressure from its reference value yields

.‘@ opP
‘ P=oT)

The partial derivatives are evaluated from the equation of state as

(2.67)




REPRESENTATION OF CONTROL COMPONENTS 29

follows:
op) _ & (WRT (10(53.3) _ 410
aTls e\ V )i~ = 53.3)(100)
oP| _ 9 (WET _—WRT - —1.0
1% 14 i Ve )
The linearized approximation for P is
P=P,+p=P;+01t—v (2.68)
From the given information, it follows that
v=V-—V;=110—-100 = 10
t=T—-T; = 200
Thus P = 100 + (0.1)(200) — (10) = 110 Ib,/ft? - (2.69)

The exact value of P is

WRT _ (10)(53.3)(1,200)
VT T (533)(110)

P = = 109.1

Therefore, the per cent error is

(109.1 — 110)100
109.1

2.11. Geometric Evaluation of Error Introduced by a Linear Approx'i-'
mation. From the linear approximation for the area of a rectangle, it

= 0.82%

///
: lw
w Lw
w
W, A=LW, Wl
L .
L

Fi1a. 2.22. Geometric representation of error incurred from the linear approximation
for a rectangle. ' .

is possible to represent geometrically the error which is introduced. In
Fig. 2.22 is shown a rectangle in which the reference length is L; and the
width W, The area of a rectangle is a function of the length L and
width W, so that the variation in the area from its reference size is
obtained as follows:
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A = F(L,W)
aA l + (2.70)
@ = 3L|;

The preceding partial derivatives are evaluated from the equation
A=LW,

a4 A
(E ; = W; and AT ; = L; (2.71)

Thus the linearized expression for the area A is
A==A,+a=A‘+W.l+L:w (2.72)

Each term in the preceding expression is represented by an area in Fig.
2.22. The difference between this approximation and the actual area
LW is the small shaded portion lw.

Application of this linearization technique to Eq. (2.4) to obtain the

equation for operation about some reference point gives f = dF/8X T
where from Eq. (2.4) it follows that

oF

Thus, the result previously obtained in Eq. (2.5) follows directly. As
illustrated by this example, for equations which are already linear the
substitution of lower-case letters for the capital-letter variable terms and
dropping out the constant terms (for example, — Myg) yields directly the
linear equation of operation about some reference point. Constant terms
drop out because the partial derivative of a constant is zero.

2.12. Linearization of Operating Curves. In the preceding section, it
was shown how equations which are nonlinear could be linearized. How-
ever, for many components encountered in control systems, the operating
characteristics are given in the form of general operating curves rather
than equations. For example, Fig. 2.23 shows a typical family of operat-
ing curves for an engine. Usually such curves are determined experi-
mentally, and it would be quite tedious and difficult to express these
curves as equations. The linearized equation for the operation of the
engine about some reference operating point is obtained as follows: From
Fig. 2.23, it is seen that the speed N is a function of the rate of fuel flow
@ and the engine torque 7, thus

N = F(Q,T) (2.73)
Linearization gives

N ON

+ ¢ (2.74)

n = ——
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The term aN/3Q L_ is the change in speed per change in fuel flow with

all other parameters held constant (in this case with 7' constant). Thus,
_ this partial derivative is equal to the reciprocal of the slope of the line of
constant torque evaluated at the reference point. That is,

_ 2,400 — 1,600
s 32 —20

oN

oQ

The partial derivative N/9T L is the change in speed per change in
torque with @ held constant. This is evaluated from a horizontal inter-

polation of the characteristic operating curves as follows:

aN| _ 2,730 — 1,530 _ _
ok~ "so—10 ~ P (2.76)

= 66.7 2.75)

The minus sign indicates that for a constant @ the speed decreases as the

Lines of constant
torque (ft-ib)

40

- o
i

20+

Fuel flow @, Ib/hr

|
10 |
!
!

N.

1

1 1 1 1 U I T
(1] 400 800 1,200 1,600 2000 2400 2800
Engine speed N, rpm

F16. 2.23. Characteristic curves for an engine.

torque increases. Thus, for operation in the vicinity of the point
N: = 2,000, Q; = 26, and T; = 120, the linearized approximation for N is

N = N;+n = N+ 66.7¢ — 15t 2.77)

The main difference in working with characteristic operating curves for
a component rather than equations is that the partial derivatives are
evaluated from a physical interpretation of the curves rather than
mathematically from the equation.




CHAPTER 3

REPRESENTATION OF CONTROL SYSTEMS

3.1. Introduction. In this chapter it is shown how to obtain the
over-all block-diagram representation for some typical control systems.
In brief, the method employed is to obtain the block diagram for each
component or process and then “hook up,”’ or connect, the corresponding
inputs and outputs for each diagram to obtain the one over-all representa-~
tion for the system. The techniques which are présented in later chapters

v

by
Supply “I Pistol on lH

\_ )
Centerline of lever in - Final position
] reference position . o .. Of lever

F1a. 3.1. Hydra.uhc servomotor

for' determining the operating’ characteristics’ 6f control systerhs "afe
based on a knowledge of the over-all block-diagram representation for
the system. T

3.2. Hydraulic Servomotor. A ‘hydraulic servomotor is shown in
Fig. 3.1. . A linkage called a “walking beam’’ connects the input position
z, the-valve position e, and the piston position. . - The centerline of the
lever when the servomotor is in its reference: position /ig.indicated: in
Fig. 3.1. The variations in z, e, and y from their referenqeﬂpoggtmns are
32
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also indicated. When e is zero, the valve is “line on line” and no flow
can go to or from the big piston.

The operation of this servomotor may be visualized as follows: When
the input z is changed from the reference position, the walking beam first
pivots about the connection at y because the large forces acting on the
piston hold it in place temporarily. This position of the walking beam is
shown by the dashed line in Fig. 3.1. Because of the corresponding move-
ment of e, the valve now admits fluid to the big piston to move it in the
direction which makes e zero. The final position of the walking beam, in
which e is again zero and the piston has moved a distance y, is indicated
in Fig. 3.1. For steady-state operation (¢ = 0), the relationship between
the input z and the output y is

y = %x 3.1)

The over-all block diagram which describes the dynamic as well as the
steady-state operation of this servomotor is obtained as follows: The

Reference

position T

. o
q a | b i ' . b
Reference y-fixed b x-fixed

e = -u X
position ) (74 e (e)
Fi6. 3.2. Walking-beam linkage.

walking-beam linkage, as shown in Fig. 3.2a, is actually a summing point.
The value of e in Fig. 3.2a is seen to be a function of the independent
variables z and y. That is, ‘ ’ '

e = f(z,y)
The application of Eq. (2.65) to evaluate e yields
de de
e—£‘x+@’_y (32)

The value of d¢/5z | is obtained by finding the ratio of the change in e
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for a-change in z with all other parameters fixed (in this case ). Figure
3.2b illustrates the linkage with y fixed. From similar triangles

de . Ae b

Eci_lgloﬁi—a+b (3.3)
Az—0

Similarly, from Fig. 3.2¢, in which z is fixed,

de Ae —a .

- _-— — = — 3-4

i~ amsodyl a+b ©4)
Ay—0

The minus sign arises because ¢ decreases as y increases. The substitu-
@ ion of the preceding results into Eq. (3.2) yields the following expression
for the walking-beam linkage:

__b _ a
“a+o* " aFpY

e (3.5)
The preceding result could have been obtained directly by a closer
examination of Fig. 3.2a. It is apparent that the motion of ¢ is the sum
of the contribution due to changing x with y fixed, that is, [b/(a + b)]z,
and that due to changing y with z fixed, that is, [—a/(a 4+ b)ly.

For the case in whicha = b

e:“”;y (3.6)

The block-diagram representation for Eq. (3.6) is shown in Fig. 3.3a.
The equation for the valve-and-piston combination is given by Eq.
(2.56), in which z is replaced by e. Thus

.:.C e = A — __CL..
Gs-=Cy % 'f} y Ap e , 3.7
3° %‘; The block-diagram representation for the preceding expression is shown

in Fig. 3.3b. Combining Fig. 3.3a and b yields the over-all block diagram
for the servomotor as shown in Fig. 3.3c. ,

The over-all relationship between the input z and the output y is
obtained as follows from the block diagram of Fig. 3.3¢:

oy O
-9 5 ap - Y (3.8)
‘ 24, _
or (1 + <, p) y==x _
or 14+ my==2 2N (3.9
_ 24, IN.
where , =7, -_TN-T
TN

. '\;,L-m%; X




REPRESENTATION OF CONTROL SYSTEMS 35

Equation (3.9) is the differential equation relating z and y. For steady-
state operation, both z and y are constant. The quantity py = dy/dt is
zero when y is constant, and thus for steady-state operation Eq. (3.9)
. becomes

y=2 (3.10)

To determine the transient response of y for a given change in z, it is
necessary to solve Eq. (3.9), which is a first-order linear differential equa-
tion with constant coefficients. If, at some arbitrary time ¢ = 0, the
input z changes instantaneously from its reference position in whichz = 0

x  + 1 e
= |}
y
(a)
e C, Y
—_— i — Lo
: R,\) " Lo .00
(5) ' o

Fi1G. 3.3. (a) Block diagram for‘walking-beam linkage; (b) block diagram for valve
and piston; (c) block diagram for servomotor.

x(t) )’UH xf
) Slope =—
*r *f 7
0.632xf___/_ | yO=(1- %z,
7z |
|
|
i
(o) t 0 T t
(a) ) (b)

Fia. 3.4. Step-function response.

to a new or final position at which z = z,, then a step change, as is illus-
trated graphically in Fig. 3.4a, has occurred.
The solution of the differential equation given by Eq. (3.9) is

y(&) = (1 — ez (3.11)

A graph of the response y(f) is shown in Fig. 3.4b. A characteristic
feature of such an exponential response curve is that, when ¢t = 7, then
y(?) has undergone 63.2 per cent of its total change. This is proved by
letting ¢ = r in Eq. (3.11); thus

y(r) = (1 — ez, = (1 — 0.368)z, = 0.632z, (3.12)
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Another unique feature of such an exponential response is that the tangent
to the curve at { = 0 intersects the final value at time { = r. This is
proved as follows: :
dy
dt

Ty
£ = T

ey,
t=0

1l

% (3.13)

Thus, as shown in Flg 3.4b, the slope of the tangent line is such that it
intersects the final value y(f); = z; at ¢ = r. The term r is called the

Q
Desired /
temperature
I,
200
Control arm
500 ieE
Pivot
800 Q.

increase
‘heat

Heat source

F1a. 3.5. Temperature control system.

time constant and is a measure of the speed of response. When 7 is small,
the system approaches its new operating condition very fast, and when 7
is large, more time is required for the change to occur.

3.3. Temperature Control System. In Fig. 3.5 is shown a system for
controlling the output temperature 7', of a chamber, such as an industrial
oven, a heat-treating furnace, etc., The desired temperature T, is
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indicated by the pointer on the control arm, which pivots about its center.
The other end of the control arm determines the position of the top of
the temperature-sensitive bellows. When the pointer is moved to a
higher temperature setting, the control arm raises the input position z
of the linkage through the liquid-filled bellows. The bellows acts as a
rigid connecting link in transmitting this motion because its length is
fixed by the temperature of its liquid. This then raises the valve, which
admits fluid to the top of the piston to move the piston extension, which
actuates the heat source to increase the heat supply.

For the case in which the control arm is set for a desired temperature
T\, if the oven temperature T, decreases, the bellows contracts. (The
bellows is filled with a liquid which expands as T', increases and contracts
as T, decreases.) Thus, as T, decreases, so does the length of the bellows,
which in turn increases . As just described, when z increases, the piston
moves in such a direction as to increase the heat @, to the oven. Thisin
turn tends to bring the oven temperature T, back to the desired value.

The over-all block-diagram representation of this system for operation
in the neighborhood of any reference temperature T is obtained by work-
ing from the input to the output as follows: The variation z of the position
of the top of the bellows from its reference position (i.e., the position when
T. = T:) is a function only of the desired temperature T,. That is,
Z = F(T), and thus

Z
a Tin [3

tie = Cabin (3.14)

2 =

where &, = Ty, — T is the variation in the desired temperature and
Ce = 0Z,/9T, ; is the change in position Z of the tep of the bellows per
change in Ti.. Thus, C; is equal to the slope of the curve of position Z
versus T}, evaluated at the reference temperature.

The length L of the temperature-sensitive bellows is a function of the
oven temperature T,, or L = F(T,). Thus

_ oL

l= aT, |, t, = Cil, (3.15)

where | = L — L; is the change in the length of the bellows (L; is the
length of the bellows at the reference temperature), t, = T, — T is the
variation in the oven temperature (note that 7T.|; = T = T%), and
Cs; = dL/a3T,

“temperature of the oven. This is the slope of the curve of L versus T,
evaluated at the reference temperature,

; is the change in the length of the bellows per change in
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From the geometry of Fig. 3.5, it follows that the change in length [ of
the temperature-sensitive bellows is equal to the change in the position z
of the top of the bellows minus the change in the position z of the bottom.
Thus, I = z — z, whence '

r=z—1 (3.16)

The block-diagram representation for Eqgs. (3.14) to (3.16) is shown in
Fig. 3.6. It should be noted from Fig. 3.6 that this is, in effect, the
comparator for this temperature controller.

The block diagram for the walking-beam, valve-and-piston combina-
tion is the same as that shown in Fig. 3.3c.

The rate of heat flow Q.. into the oven is a function of the position of the
piston Y[ that is, Q. = F(Y)]; thus

I = 5y ; y=Cy 3.17)

where Cy = 0Q../9Y ; is the change in heat supplied per unit change in

piston position at the reference condition. It is necessary to obtain

; experimentally the curve of @, versus posi-

in e, H2 & x tion Y in order to evaluate Cy,. The net

a1 rate of heat flow into or out of the oven is

¢in — @o. The total heat accumulated is the

¢3 time integral [(gi. — ¢o) df, which is equal
to the product CsWi,; thatis,

Fia. 3.6. Block dlagram for f (g — g ) dt = = CsWt, (3.18)
comparator.
where Cj is the average specific heat of the substance in the oven, W is
the total weight, and ¢, = T, — T; is the corresponding temperature
change.
The rate of heat loss @, is a function of the temperature difference
To - Ta;
Q= F(Ta - Ta) (3'19)

where T, is the ambient temperature. Linearization gives

Q.

P, 4. LE— — = ', — La 3.20
Qo B(Ta —_ Ta) : (to ta) Cﬁ(t l ) ( )
. _ aQo

where Ce = 3T — T Ty — T ks

For a given oven, it is possible to plot a curve of §, versus T, — T.. The
constant Cj is the slope of this curve at the given reference point. Elimi-
nating ¢, between Egs. (3.18) and (3.20) gives

R T T .
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w — Co(to — 1
q (to a) = C Wi,

P
Qin — CGtO + Cﬁta _
C EW]) -

The block-diagram representation for Eqgs. (3.17) and (3.21) is shown in
Fig. 3.7. Combining the block diagrams of Figs. 3.3¢c, 3.6, and 3.7 yields
the completed over-all block diagram shown in Fig. 3.8.

Usually, systems such as this temperature controller are subjected to
an external disturbance. By an ex\ternal disturbance is meant something

or

lo (3.21)

e
I
CG
y C (‘Iin ) +L‘- 1 to‘
4 ~ 1 C,Wp
Cs

Fia. 3.7. Block diagram for heat source and oven.

Fic. 3.8. Over-all block diagram for temperature control system.

which acts independently and usually undesirably to affect the operation
f the system. In this case, the external disturbance is . An extrane-

ous or external disturbance may be regarded as an unwanted input to the

system which tends to affect the value of the controlled variable.

In determining the dynamic behavior of a system, one is interested in
the variation of the system parameters from some reference condition.
This is the type of information which is obtainable from the block-
diagram representation shown in Fig. 3.8. If absolute values are desired,
it is an easy matter to convert from &, to T, or from ¢, to T, by merely
adding the reference value.
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c
(a) =2 m(a-b)ﬁa-b—c — _a t/l\—a—b—c
P
G(p)-b a +,~ Gp) aG(p)-b
) —2—lGip—3O)—25 = ,T »ap)
b 1/G(p)
Is
(a-b)G(p) (a-b)G(p)
() a + Gip)——— = -—a—vG(p)—:?—-»
b G(p)
l
b=aG(p) a b

A

(dy = G(p) — = I > G(p)
b<—| G(p)

b=aG(
(6) ——q > Gip) — Pl == > G(p) ! 5,

aJ 1/G(p)

c¢=[a~c H(p)] G(p) “‘J
-G

- " I5G () Hp) P .

T3] ( G(p) - = +G Hp)|
b=cHG) |22

Fig. 3.9. Equivalent block diagrams. (a) C:)mbining interconnected summing
points; (b) moving a summing point behind an element; (¢) moving a summing point
ahead of an element; (d) moving a take-off point behind an element; (¢) moving a
take-off point ahead of an element; (f) eliminating a minor feedback loop.
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~ In summary, the comparator for this temperature control is the tem-
perature-sensitive bellows assembly. The desired input is the position 2
of the top of the bellows, and the variation of the length of the bellows is a
measure of the output temperature. The errorz = z — I determines the
input position of the walking-beam linkage. The servomotor serves as an
amplifier which produces large hydraulic forces for moving the piston
position y to actuate the heat supply. Thus, the major elements in a
feedback control system consist of a comparator and a power amplifier
which actuates the system to be controlled.

3.4. Block-diagram Algebra. It is often desirable to rearrange the
form of a block diagram. In Fig. 3.9 are shown a number of rearrange-
ments which are commonly employed. It is to be noticed that in all
cases the rearrangement does not affect the over-all relationship between
the input elements (i.e., elements with arrowheads pointing into the

ulDistunjbance signal
B Disturbance
) e - function elements
Refererice Control
elgr‘r?:rsts eloments li Controlled system
+ +
—v——> A r £ | Gl(p) = Gz(p) < >
Command -
signal
Feedback elements
H(p) |«

F1a. 3.10. General block-diagram representation for a control system.

diagram) and the output elements (i.e., elements with arrowheads point-
ing away from the diagram). There are many possible rearrangements
for systems. However, it is usually desirable to make the ultimate form
of the block diagram the same as that shown in Fig. 3.10. The reason for
this is that the methods to be presented later for evaluating the per-
formance of systems are based on systems which are represented in this
general form,

Application of the technique shown in Fig. 3.9f to Flg 3.8 yields the
following for G,(p) and Ga(p):

_ Cl/2A1p _ C, - C,
e OO =1 R = T odpG T ©22)
N oo - 1/CsWp 1/C, _ 1/Cs
Galp) = 1 + Co/CsWp 1+ CsWp/Co 1+ rp (3.23)
where | _ 24 d = G
LIRSS M AR I T;l——.C—'l— an 72__ Cs
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The resulting block diagram is shown in Fig. 3.11. In effect, block-
diagram algebra was used to eliminate the minor feedback loops. A
minor feedback loop is an 1nternal feedback loop which takes place
within the main loop.

The operational form of the dlfferentla,l equation relating the output ¢,
of this temperature controller to the input ¢, and the external disturbance
t, is obtained from Fig. 3.11 as follows: Start with the reference input
Ct,, subtract the feedback signal Cyl,, and then continue to write the

CS
tn [ L@ & c, |lg +£+ | VG t
2 A l+7p 1+7,p
)
G,

Fi1a. 3.11. Final block diagram for temperature control system.

mathematical operations indicated by the feedforward portion of the loop
until the output , is obtained. That is,

1
{[(Cztm Cato) 1 + ] + Cstal m =i (324)
Solving for £, yields
CoCitin — C3Cil, + Co(1 + 71p)ta —¢

Co(1 + 71p)(1 + 72p)
C:Cistn + Co(1 + T1p)la (3.25)
Col + )L + 72p) + CiCs '

Equation (3.25) is the operational representation of a linear differential
equation with constant coefficients. In Chap. 5, it is shown how linear
differential equations with constant coefficients may be solved by use of
Laplace transformations.

3.5. Speed Control System. Figure 3.12 shows a typical speed control
system for gas turbines, steam turbines, or diesel engines. The position
of the throttle lever sets the desired speed of the engine. The speed
control is drawn in some reference operating position so that the values
of all the lower-case parameters are zero. The positive direction of
motion of these parameters is indicated by the arrowhead on each.

The center of gravity of the flyweights is at a distance R = B; + r
from the center of rotation. The flyweights are geared directly to the

or t, =
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output shaft, so that the speed w of the flyweights is proportional to the
output speed. A lever which is pivoted asindicated in Fig. 3.12 transmits
the centrifugal force from the flyweights to the bottom of the lower spring
seat. The pivot and lever rotate with the flyweights as a unit. If the
speed of the engine should drop below its reference value, then the
centrifugal force of the flyweights decreases, thus decreasing the force

Desir%d 3,000
R spee
Nia
2,000
1,000

Increase flow
Decrease flow

— Fuel flow
\/= to engine
Flow control
valve

Fi1c. 3.12. Speed control system.

exerted on the bottom of the spring. This causes z to move downward,
which in turn moves ¢’ downward. Fluid then flows to the bottom of the
big piston to increase y and thus open wider the flow control valve. By
supplying more fuel, the speed of the engine will increase until equilibriam
is again reached. For steam turbines, the flow control valve controls the
flow of steam ra’er than fuel as is the case with gas turbines and diesels

Suppose that the throttle lever is moved to a higher speed setting, which
in turn causes z to move downward. This in turn causes z to move down-
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‘ward, As just discussed, moving z downward opens the fuel flow valve,
 which increases the speed. ‘

The over-all block-diagram representation for this system is obtained as
follows: The position of the top of the spring is a funection of the desired
speed only. Thus, the variation of the top of the spring z from its
reference position is

2 = Conin (3.26)

where n,, = N, — N; is the change in desired speed and C; = dZ/0N:. 'i
is the slope of the curve of Z versus N, evaluated at the reference point.

Fl2.
—_—

Fia. 3.13. Flywzizht lever.

The centrifugal force F, acting on the flyweights is
F, = 2MRw? 3.27)

where M = mass of each of the two flyweights
R = distance from center of rotation to center of gravity of each
flyweight T
« = angular velocity of flyweights
Usually, a governor is geared directly to the output shaft such that w is
equal to the gear ratio times the output speed; i.e.,

2%
w = Cg @
where C, is the gear ratio and the constant 2x/60 converts the output
speed N, from rpm to radians per second. Substitution of this value for
o into the preceding expression for F. gives
2xC,

F.=2 —go—)’ MRN.® = C,MRN.? (3.28)

N,

where C; = 2(2xC,/60)2 is a force-conversion constant.
Effects due to inertia, friction, backlash, ete., are generally classified as
secondary effects and do not have a marked influence upon the basic
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operation of a system. In the initial design phases, the designer is chiefly

interested in evaluating the primary factors which affect system per-

formance, and thus he disregards secondary efiects, as is illustrated in this -
. analysis.

In Fig. 3.13 is shown an enlarged view of the flyweight lever. The
distance from the pivot to the center of gravity of the flyweight is b, and
the distance from the pivot to the spring seat isa. The angle of inclina-

_tion of link b is designated as «. Taking moments about the pivot gives

E‘b in —E'asin
2 S a—2 o

or F, = %F = C.F, (3.29)

‘where C, - b/a is a lever-ratio constant. Because of the large centrif-
ugal force developed by a flyweight, gravitational effects are negligible.
Substitution of F, from Eq. (3.28) into the preceding expression gives

Fg = CfCrMRN02 (3.30)

* 'The two independent variables in Eq. (3.30) are R and N,, so that
linearization gives

fo=Cor + Cam, (3.31)
where C; = g—% .= C,C.MN;?
aF. — . 3
Cy= N | = 2C,C,MR:N;
Note that
: Na : = Nin ; = Nl»'

The compression of the spring from its reference length is z — 2. Thus,
the variation in force exerted by the spring is

fi = Kz —2) (3.32)
where K, is the spring constant. Setting Eqgs. (3.31) and (3.32) equal,
K(z —z) =Csr + Cen, (3.33)

The geometry of Fig. 3.12 shows that the motions of r and z are related
by a lever so that r = —C,z. The reason for the minus sign is that, as
r increases, x decreases. Eliminating r from the preceding equation
yields
Kz—Kazxz=—-CCyx+ Ci,

N Klz - C4na

or =K, —CC,

(3.34)
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The block-diagram representation for Egs. (3.26) and (3.34) is given in
Fig. 3.14, which shows the comparator for the speed control system.
The operation of the servomotor was discussed in Sec. 3-2, and the -
block diagram was given in Fig. 3.3c.
The flow through the flow control valve is a function of the position
Y [that is, @ = F(Y)]. Linearization gives

9Q
=37

y = Csy (3.35)

where Cj is the slope of the curve of @ versus Y evaluated at the reference

condition,
Tin (z) + 1 x
> C > K e [r—
2 s _? K.~C,C,

G

e

F1ac. 3.14. Block diagram for comparator.

In general, the operating speed N, of an engine is a function of the fuel
flow Q supplied to the engine and the torque T exerted on the engine as it
rotates. Thus

N.=F@Q,T)
The linearized form of this expression is
n, = Coqg — Cit (3.36)

where Cs = dN,/3Q L is the change in speed per change in fuel and

C; = — aN,/oT L is the change in speed per change in torque. For a
constant flow Q, the speed.decreases as the torque on the engine is
increased, so that dN,/d8T L is a negative number., However, the minus

sign is seen to make C; a positive number. For convenience in using
block diagrams, it is desirable that all constants are positive numbers.
The variation in the torque ¢ is

t= Ty — Ts) 4+ Ja =tz + %Jpn, (3.37)

The variation ¢ of the torque exerted on the engine is composed of the
change in torque #; due to a change in load plus the inertia torque
(2r/60) Jpn, required to accelerate or decelerate the engine. (The
inertia of a large engine is obviously a prime consideration.) The values
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of the preceding partial derivatives are obtained from the curves of the
operating characteristics for the particular engine under consideration.
Substitution of Eq. (3.37) into Eq. (3.36) yields

2%
n, = Ceq — Cqly, — 076(—)-]2)"%
Cog — Catr  _ Cog — Catr _ Ce

or n, = (g — Cet) (3.38)

1+C72—1er 1+"2P 1+72p
60
_aNo/aT .
where 12=C7%J and CS=Q=——L=iQ.

For an implicit function, the product of the partial derivatives is —1
Thus, by writing N, = F(Q,T) in the implicit form G(Q,T,N,) = 0, it
follows that

9QoT N, _ _, . =ON,JOT _ 99
3T 3N, 0Q aN,/8Q ~ oT

The block-diagram representation for Eqs. (3.35) and (3.38) is shown
in Fig. 3.15.
/"

_Cs

+

y (q) Cs no
> Cs + 1+7,p

Fia. 3.15. Block diagram for engine.

The over-all block-diagram representation for this speed control system
is obtained by combining Figs. 3.14, 3.3¢, and 3.15, as is shown in Fig.
3.16, in which r; = 24,/C,.

By letting K, = Cs/(K, — C,Cs) and eliminating the minor feedback
loop, then Fig. 3.16 may be represented as shown in Fig. 3.17. The
operational form of the differential equation relating the output 7, to
the input =, and external disturbance ; for the speed control system
represented by the block diagram of Fig., 3.17 is obtained as follows:
Subtract the feedback signal Cem, from the reference input C:K.n.,,
and perform the mathematical operations indicated by the feedforward
portion of the block diagram until the output 7, is obtained. That is,

K

([ cxm— cany 2

Cs _
] - CStL} TFmp_ o (3.39)
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ln

~Cq
n +
| CK, . - G . l+c:p r>
- - 2
C, =
Fic. 3.16. Combined block diagrams.
I
—C8
N C.K + e K, + éj'. Cs o
2% 1+7p l+1,p o
C, |

Fia. 3.17. Over-all block diagram for speed control system.

u Disturbance
signal
Disturbance
frnctio;:
: elements
2?'22?,1%?53:{ Reference  Actuating Indirectly
v input signal d Controtled controlled
o r e + variable — variable
lorence | 1 £0) { [ control |m_# Controleg | ¢ | Indirectty
elements a elements system system
b
Feedback
elements

Fi1G. 3.18. Generalized feedback control system.

e s e e e
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Solving for n, yields

(A 4+ 71p)(A + 72p) + CiCeKiln, = C2CeK1Knin — CoCs(1 + m1p)ie
(3.40)
_ CsCeK 1K nin — CoCs(1 + mip)ts (3.41)

or ™ = "1+ rp)(L T r2p) + CiCsKs

8.6. Generalized Feedback Control System. A general representation
for a feedback control system is shown in Fig. 3.18. It is to be noticed
that the command signal, or desired input, does not usually go directly
to the comparator but must be converted to a suitable input for this
device. Similarly, the controlled variable, or output, in the general
case must also be changed by the feedback elements H(p) before it can
be measured by the comparator. The actuating signal e is amplified
by the control elements G1(p) before entering the system G:(p) being
controlled. An external disturbance, as shown in Fig. 3.18, is a dis-
turbance which acts independently to affect the operation of the system.
Although in Fig. 3.18 the external disturbance is shown entering the
system between the control elements and the controlled system, in
general, the external disturbance may enter the system at any point.

It is also to be noticed from this generalized representation of a control
system that the controlled variable is not necessarily the quantity
‘which it is desired to control. For example, a household thermostat
controls the temperature of the air around the thermostat, and depending
upon the circulation of air in the house, the temperature of other areas
may vary considerably. In addition, the idealized purpose of this con-
trol is to maintain the comfort of the persons of the household, which
depends upon humidity, their clothing, their amount of physical activity,
etc. Thus, it is apparent that the controlled variable is not necessarily
the ultimate quantity which it is desired to control.




CHAPTER 4

STEADY-STATE OPERATION

4.1. Introduction. By steady-state operation is meant the equilibrium
state attained such that there is no change with respect to time of any
of the system variables. The system remains at this equilibrium state
of operation until it is excited by a change in the desired input or in the
external disturbance. A transient condition is said to exist as long as
any of the variables of the system is changing with time. In this chapter,
it is shown that considerable information about the basic character of a
system may be obtained from an analysis of its steady-state operation.

4.2. Steady-state Analysis of a Control System. The differential
equation relating the output n, to the input #;, and external disturbance
ty for the speed control system represented by the block diagram of
Fig. 3.17 is given by Eq. (3.40). For steady-state operation n,, n:, and
t; will have constant values, and therefore terms resulting from powers
of p operating on these constant quantities will be zero. That is,

ol = d(n,)/dt Isa = 0, etc. Thus, the equation describing the steady-

state operation of this speed control system is
_ CzCsKle’nm —_ CeCstL

E—— Tl = 1+ C.CoK, (*.1)

It should be noticed that Eq. (4.1) could also have been obtained by
letting » = 0 in the over-all block diagram of Fig. 3.17. Doing this
yields the block diagram for steady-state operation shown in Fig. 4.1a.

In general, the block diagram describing the steady-state operation of
a system may be represented as illustrated by Fig. 4.1b, in which

Ko, = [Gi(p)lo—0 Ko, = [G2(P)lpm0  Ku = [H(D)],-0 (4.2)
From Fig. 4.1b, the equation for steady-state operation is found to be
[(Av — Kyc)Keg, + BulKe, = ¢

_ _AKeKa v + ___BKe, "
"1+ K¢ Ke,Kn 1+ K¢ Ka.Kn

or c 4.3)

Corresponding quantities for the speed control system are ¢ = m,,
v =N, u=1,A =CK, B= —Cs Kg, = Ky, Kg, = Co,and Ky = C..
Substitution of these results into Eq. (4.3) verifies Eq. (4.1).
50
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The constant A which appears in Eq. (4.3) is, in efféct, the scale factor
for The input dial. ™~ To have the coeflicient of the » term equa,l to unity,

A must be selected such that— 7 ————

AKqKg, 1
1+ K¢Ke,Kn
1+ KoKoKy 1
or 4 = Ko.Ke, = Ko Ko, + Ky (4.4)

When A is chosen in accordance with Eq. (4.4), the coefficient of the v
term is unity and thus Eq. (4.3) becomes

BKg, B

=Vt T X ReKakn " = ' T /Ko + KeKn

u - (4.5)

To have the controlled variable ¢ equal to the command signal » (that
is, ¢ = v), it is necessary that the coefficient of the u term be zero. This

I

_.C8

n, . p Ny n
LN O K,ﬂtg)—-cs.. »

(a)

-
+

(b)
Fia. 4.1. Block diagram for steady-state operation.

coefficient is zero if either K¢, or K is infinite. However, from Eq. (4.4),
it follows that an infinite value of Ky would necem
which 1S physically impossi : infinite.
Thtms‘ﬁﬁmmsy‘havmg an Megmtar—m-the—cmm'oi—el‘emts to
yield a 1/p term which gives the effect of an infinite constant duting
—— .
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steady- tion. This type of system is ca.lled an integral-type
system.

Satisfactory performance may often be achleved by makmg the coef-
ficient of the u term sufficiently small so that
disturbance cause only thgt_m Con rol systems for_which the
coefficient of the u term is finite are proportlonal-tvpe systems. The
ext two sections treat proportional- and 1ntegral-type control systems,
respectively.

4.3. Proportional-type Systems. The speed control system discussed
in the latter part of Chap. 3 is a proportional-type control system.
Substitution of the corresponding values for this speed control system
into Eq. (4.4) gives

1
A—CzK.=(7°_Kl’+Cq

' 1 1
or C, = K (Cg_Ki + 04) (4.6)

The term C; = dZ/0N,,

Because some of the terms in Eq. (4.6) are partial derivatives evalu-
ated at the reference operating con-

; is the scale factor for the speed-setting dial.

3'°°°N dition, the value of the scale factor

Throttle lever in Coi for diff. £
=100 218 seen to vary for di erent refer-
ence points. This would result ina
1,000 nonlinear scale for the input speed

dial. The use of a nonlinear scale
may be avoided by having the input
F16. 4.2. Cam to avoid nonlinear input speed-setting position a cam, which
scale. . . . .
in turn sets the desired input posi-
tion of the top of the spring, as is shown in Fig. 4.2. It is a relatively
easy matter then to set up the speed control system so that Eq. (4.6) is
satisfied for any reference condition.
When this is so, Eq. (4.1) becomes

T _CiCs
Mo = T = T T C.CoKs

Equation (4.7) i§ the typical formm of the steady-state relationship
which exists between the ﬁm for a
proportional-type control system,, When the load torque T is not equal
to the reference value T, (that is, {, > 0), then 7, is not equal to n,.

i 4.7)

For example, suppose that this is the speed control system for the gas .

turbine of a jet airplane and that Ty, is the torque required for the
airplane in level flight. When the airplane is inclined to gain altitude,



-

Q " BTEADY-STATE OPERATION 53

a greater load torQue 7. is required than that for level flight (that is,
tr > 0). Thus, the output speed is slightly less than the desired value
for this flight condition.

The physic,reason for this can be seen by looking at the actual speed
control systet®shown in Fig. 3.12. For level flight, the system is set up
so that N, = N,,. When the airplane is gaining altitude, the load torque
is increased. Thigaincreased torque resuilts in a decreased speed, which
in turn causes a 10Wer position for z. Because of the lower position for
z, there is a greater flow of fuel. To have the airplane continue to gain
altitude, more ﬂov&s required than for level flight. To maintain this
increased flow, the engine speed must be slightly less than for level flight.

Another method of understanding the operation of a proportional-type
control system is obtained by considering individually the steady-state

Lines of constant N,

1 Q T, 1 @ c ¢’
q

\\ B

(a) ®

F16. 4.3. (a) Steady-state engine characteristics; (b) steady-state control-element
characteristics.

operating characteristics of the system to be controlled and those of the
control elements. For an airplane in level flight, it is possible to plot a
curve of fuel flow Q required to maintain various speeds N,, as shown in
Fig. 4.3a by the curve Ty, = T,. The curves for different load torques
are also shown in Fig. 4.3a. The curve for T'; would correspond to
operation of the airplane at a certain angle of inclination. Similarly,
the curve T'; would correspond to the airplane losing altitude at a certain
angle of declination. Thus, Fig. 4.3a represents the operating character-
istics of the system to be controlled.

To determine the operating line A BC for the control elements as shown
in Fig. 4.3b, first fix the desired speed setting at some value N;,. Then
for various speeds of rotation N, plot the corresponding flow @ coming
from the controller. In this manner, the family of curves of N, versus @
for various constant values of Ny, is obtained as shown in Fig. 4.3b.
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By superimposing the characteristics of the contrd elements and the
controlled system as shown in Fig. 4.4a, much information about the
operation of the system may be obtained. For a given engine speed N,
the fuel flow being supplied by the controller is obtained‘om Fig. 4.4a

_Lines of
constant N,

oy

|
|
%
C, C,C; C; C,
, (d)

Fic. 4.4. (o) Engine and controller steady-state characteristics; (b) general repre-
sentation of steady-state characteristics.

by proceeding vertically up from N, to the line of operation of the con-
troller and then proceeding horizontally to obtain the corresponding
value of Q. Similarly, the fuel flow required to maintain the given flight
condition (T = T, T., or T3) is obtained by proceeding vertically up
from N, to the torque curve and then proceeding horizontally to obtain
the corresponding value of Q. Steady-state operation exists at the
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intersection of the line of operation of the controller and the torque line
for the given flight condition, because at this intersection just enough
flow is being supplied as is required to maintain the flight condition.
For example, if the airplane is in level flight, then the intersection at
point A of the line T and the operating line for the desired speed setting
N represents the steady-state operating point for the system. If the
load is increased to T'; while the desired speed is unchanged, then the new
operating point must be on the line of T'; at point B. Because AB is
not a vertical line, variations in the load are seen to cause variations in
the output speed. A proportional-type controller is sometimes called a
droop-type controller, and the line AB is referred to as the droop line.

Steady-state Constants. The characteristics of the system to be con-
trolled are specified in Fig. 4.4a by the family of curves of @ (the manipu-
lated variable) versus N, (the controlled variable) with lines of constant
T (the disturbance). The characteristics of the controller are repre-
sented by the lines of constant N, (the command signal) which are
superimposed upon this plot.

In general, one can plot M (the manipulated variable) versus C (the
controlled variable) with #ffies of constant U (the disturbance) for the
controlled system, a§ shown is Fig. 4.4b. The characteristics of the
controller may then be superimposed upon this plot, as illustrated by
the lines M%ig. 4.4b. Thus, Fig.
4.4b is a general representatio operating character-
istics for a typical control system.

Equation (4.3) describes the steady-state operation about any reference
point of operation. The constants in Eq. (4.3) may be evaluated from
the operating curves of Fig. 4.4b. For example, the coefficient of the »
term may be evaluated by maintaining U fixed so that w = 0. Thus,
the « term in Eq. (4.3) vanishes. Solving the resultant expression for
the coefficient of the » term gives

AKoKa, _c| _AC
1 + KGIKG,KH - Viu=0 o AV

From Fig. 4.4b it is to be noticed that for operation about the point
(C:,M,) the value of this coefficient is

AKoKe,  _ AC
T+ KoKa.Ka AV

_ac

U = constant av

(4.8)

U = constant

_Ci—=0C

= 49
Uz V3 - Vl ( )

Similarly, by maintaining a constant V so that v = 0, the coefficient of
the u term is found, from Eq. 4.3, to be

_ BKe, _ _c¢| _AC
1 + KG,KG,KH - U =0 B AU

oC (4.10)

¥V =constant U |v=constant
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For operation in the vicinity of the point (C;,M;) this coefficient is

) BK(;, _ Ag _ Ca - 02
1+ KeKeKz AUy, UL— Us

When the droop line is vertical, AC = 0 and the coefficient of the u term
vanishes. A vertical droop line is characteristic of an integral-type
control, as discussed in the next section.

When the operating curves are all parallel and equidistant, then the
value of each of the preceding steady-state constants remains the same
over the entire range of operation.

Illustrative Exzample. A typical family of steady-state operating
curves for a speed control system for a diesel or turbine is shown in Fig.
4.5. Determine the steady-state equation for operation in the vicinity

(4.11)

Lines of constant N;,
\Q 5,000 T3 =300

T, =100
2,000 .

1 | I
0 2,000 4,000 6,000

F1a. 4.5. Operating curves for a speed control.

1 >
8000 N,

of point A. If this were an open-loop rather than a closed-loop system,
what would be the equation for steady-state operation about point A?
soLuTION. From Eq. (4.8) it follows that

AKg¢Kg, _ AN,| _ 5000 — 3,000 _
1+ KKKz AN,|ir, 5,000 — 3,000

Similarly from Eq. (4.10)

BKs, __ _ AN, _ 4,500 — 3,400 _
1+ Ko Ke,Knx ATz |Nin=4000 100 — 300

Thus the equation for steady-state operation in the vicinity of point 4 is

1

=55

fle = Nyn — 5.58

For an open-loop control system there is but one set value of the flow @ for
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each desired speed. This value of Q@ must be the flow required to make
N, equal to N, at the reference load torque 7'z, = T2 For a desired
speed of 4,000 rpm, it is to be noted from Fig. 4.5 that the value of Q is
2,000 Ib/hr. Thus the horizontal line of @ equal to 2,000 is the open-loop
operating line of the controller when N;, = 4,000. Similarly, when N,, is
5,000 the operating line is a horizontal line through A4’, and when N,
is 3,000 the operating line is a horizontal line through A”. Thus

AKeKa  _ AN, | _ 5000 —3,000 _
1+ KeKe,Kz ANw|r. 5000 — 3,000
BKs,  _ AN, _ 5,800 — 2,700 _

and —~15.5

1+ Ko,Ka,Kz ATL{Na=t000 100 — 300
The resulting steady-state equation is
No = M — 15.50L

In effect, an open-loop system is a proportional control in which the
droop lines are horizontal.

Fic. 4.6. Integral-type control system.

4.4. Integral-type Controller. By eliminating the linkage between z
and y of Fig. 3.12 and using the hydraulic integrator shown in Fig. 4.6,
the proportional-type speed controller is converted to an integral-type
controller. The block-diagram representation for this integrator is also
shown in Fig. 4.6. The substitution of this diagram for that of the
servomotor which it replaces in Fig. 3.16 yields the block-diagram
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represéntation shown in Fig. 4.7a. The value of Kg, is computed as

follows,
(el 1 _ (B .
Kal - [(Kl - C"Cs)Alp]p=0 - (p )p=0 = _ (4.].2)

where Kr = CiCs/(K. — C,C5)4, is the constant associated with the
integrating portion of the system, as is shown in Fig. 4.7b.

l‘x.

—-Cq
Rin + e 1 x C; Y. q + N CG ng
I A e T i Tomp [
Cy |
(a)

I

~Cs
Ny + e K qg _+ - C "o
— C,K, T’ ] 1 5 >

- +7,p
Cy |

(b)
Fia. 4.7. Over-all block diagram for integral-type control.

Because Kg, is infinite, w&&ﬁon
Thus, subtracting the feedback signal from the reference input i Fig.
4.7b gives

@n —Cm,=e=0

or N = C. Nin (4.13)

The preceding expression’shows that the speed is independent of the
load torque for an integral-type control system. It is an easy matter
to adjust the scale factor C; for the input speed dial so that C.K,/Cs = 1,
in which ease

o = Min (4.14)

The operation of an integral-type control system may be visualized
as follows: From Fig. 4.6, it is to be seen that, if x momentarily changes
and then returns to its line-on-line position, the position of y has been
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changed permanently and so has the amount of flow going to the engine.
Therefore, changing the amount of flow to account for a new operating
torque does not change the steady-state position of z, which must be line
on line. Because neither z nor the spring compression changes, the
output speed must always be equal to the desired value in order that the
flyweight force balances the spring force. (Note that, for the propor-

tional-type control, changing the fuel flow reqUITeS T permanent change
in the position x.)

An integral-type controller is easily recognized because there must be an
integrating component yielding a 1/p term in the operational expression
between the comparator an 3 € external disturbance enlers
the system. An integral-type control system has no speed droop, and so
the line of operation of an integral-type controller is a vertical line. The
operating characteristics of an integral-type control are shown in Fig.
4.8.

3
Qmax4 —————— C - ——C, T3

J

F1c. 4.8. Operating characteristics for integral-type control.

An integral-type controller is also called a floating-type controller
because of the floating action of the position y of fhe flow-setting valve.
Two other terms used for an integral-type controller are reset-type
controller and isochronous-type controller. -

4.5. Proportional- plus Integral-type Controller. From a considera-
tion of steady-state operation only, integral-type systems seem preferable
to proportional systems. However, it is generally easier to achieve good
transient behavior with a proportional system rather than an integral
system (techniques for determining the transient behavior of systems are
presented in Chaps. 5 through 10). It is possible to combine the basic
features of a proportional-type controller and an integral-type controller
to form a proportional- plus integral-type controller, as is shown in Fig.
49,

The action of a proportional- plus integral-type controller to a change
in the input or external disturbance is initially similar to that of a pro-
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portional-type controller, but as the new equilibrium point is reached,
the control action becomes the same as that of an integral-type controller.
(In effect, the slope of the droop line continually increases.)

A proportional- plus integral-type controller combines the desirable
transient characteristics of a proportional-type control and the feature
of no steady-state error of the integral-type control.

A proportional- plus integral-type controller is shown in Fig. 4.9.
The proportional action is provided by unit 1, which is the same as that

F1a. 4.9. Proportional- plus integral-type control.

for the proportional controller shown in Fig. 3.12. The equation for

the proportional action is
1

= —— 4.1
Y1 i +1'1Px (4.15)

The integral action is provided by unit 2, which is the same as that for

the integral controller shown in Fig. 4.6. The equation for this integral

action is

' o= L 2 (4.16)
2 Ap

The proportional and integral actions are added by a walking-beam

linkage such that .
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y=ttu (4.17)
The substitution of y; and y. into the i)receding expression gives

1 1 C

The individual block diagrams for Eqs. (4.15) to (4.17) are shown in Fig.
4.10a. The combined diagram is shown in Fig. 4.10b. The substitution
of this combined diagram into its corresponding position between = and

o <
> Ap Y,
Y 1
x F 4 x ;(_C_+_) |y
+ 2 2\Ap 1+7p
o 1 y
| 1+7mp 1 (d)
(a)
F16. 4.10. Block diagrams for proportional plus integral action.
|*
—-Cs .
By C.K. ()1 Cs ( 1 +£) (q) %"’ Cs no
> Y28 2 K=C,C3\1+7,p Ap + 1+np | -

C, |=

Fia. 4.11. Over-all block diagram for proportional- plus integral-type control.

y of Fig. 4.7a yields the resulting representation for this proportional
plus integral control, as is shown in Fig. 4.11.
The value of Kg, for this proportional plus integral controller is

0 1 AN
KG; - 2(K. — C,-Ca) (1 + Tlp + Z;)p-o = © (4'19)

The proportional plus integral actions are clearly evidenced by Eq.
(4.19). Because Kg, is infinite for steady-state operation, it follows that
e is zero during steady-state operation. Thus, from Fig. 4.11

CoKinio — Cimo = ¢ = 0
_CiK,
—_ 04 nl!l

or No

(4.20)
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Comparison of Eqgs. (4.20) and (4.13) shows that the steady-state
opera.tlon of a proportional- plus integral-type control system 1is the same
a8 that of an mtegra,l-type control system alone, A proportional plus
integral control 18 sometimes reteMmpensated isochronous
control. To better understand the action of this control, suppose that
the throttle lever is moved to increase the speed. This causes the posi-
tion z to move down as does ¢’. The time constant 7, of the proportional
unit is small so that y; changes rapidly to increase the flow setting. The
resulting motion of y; returns ¢’ to its line-on-line position.

For the integrating unit, the quantity C/A is small so that y. con-
tinues to move at a slower rate to provide corrective action. As the
speed increases, the position £ moves up. The integrating unit continues
to provide corrective action until z is returned to its line-on-line position
(that is, z = 0). In summary, for proportional plus integral control, the
initial effect is provided primarily by the proportional action, and the
final effect is provided by the integrator.

4.6. Modes of Control.t-3 In addition to proportional and integral,
another mode of control is derivative, or rate, action. For a derivative-
type controller, the steady-state expression for the control elements is

= (K'D)p—0 =0 (4.21)

The output of a derivative controller is proportional to the rate of
change of error. For any constant value of the actuating signal e, the
output of the control elements is zero. Thus, steady state may exist
in a derivative-type control system with any constant value of error
signal. Because a derivative-type controller operates on the rate of
change of error and not the error itself, the derivative mode of control
is never used alone, but rather in combination with a proportional, o1
integral, or proportional- plus integral-type controller. The advantage
of using derivative action is that the derivative is a measure of how fast
the signal is changing and thus tends to give the effect of anticipation.
The addition of derivative action is limited primarily to systems which
respond very slowly, such as large industrial processes.

4.7. Summary. The selection of the control elements G1(p) was seen
to have a predominant effect upon the steady-state operation of a system.
For more complex control systems, it becomes increasingly difficult, if not
impossible, to distinguish the individual modes of control. However,

1G. J. Murphy, “Basic Automatic Control Theory,” chap. 6, D. Van Nostrand
Company, Ine., Princeton, N.J., 1957.

2D.P. Eckma,n, “Automatic Process Control " John Wiley & Sons, Inc., New York,
1958.

3G. K. Tucker and D. M. Wills, “A Simplified Technique of Control System
Engineering,”” Minneapolis-Honeywell Regulator Co., Philadelphia, 1958.
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regardless of the various modes that may be present, it is a relatively
simple matter to determine whether Kg, is finite or infinite. For an
infinite value, the integral action predominates and there is no steady-
state error due to variations in the external disturbance. For a finite
value, the system behaves as a proportional-type controller.

A major problem in the design of control systems is the determination
of the system parameters to obtain satisfactory transient performance.
The transient behavior of a system is prescribed by the differential
equation of operation for the system. In the next chapter, it is shown
how such differential equations may be solved algebraically by the use of
Laplace transforms. In Chap. 6, it is shown that the transient behavior
is governed primarily by the roots of the characteristic equation for the
system. Thus, the transient characteristics of a system may be ascer-
tained directly from a knowledge of the roots- of the characteristic
equation,




CHAPTER 5

LAPLACE TRANSFORMS

5.1. General. By transient response is meant the manner in which a
system changes from some initial operating condition to some final condi-
tion.. For example, in Fig. 5.1 it is to be seen that at some arbitrary time
t = 0 the output is ¥(0). The curve marked (@) represents the transient
response of a system in which the output y(f) slowly approaches its new
operating condition. The curve marked (b) shows a system which
successively overshoots and undershoots, but these oscillations gradually
die out as the new operating condition is obtained.

Ay

¥(0)

LN |

[o]
Fiq. 5.1. Transient response.

A linear control system or component is one in which the operation is
described by a linear differential equation, usually with constant coeffi-
cients. For a known input, classical methods could be used for deter-
mining the output. However, considerable time is saved by using the
Laplace transform method of solving linear differential equations. In
addition, Laplace transform analysis is closely related to other methods
for evaluating system performance, as is explained in later chapters.

A brief review of classical methods for solving differential equations
with constant coefficients is first presented. This is done so that, when
the Laplace transform method is explained, a clearer understanding of
the similarities and the differences between the two methods results.

6.2. Classical Methods. The transient response of a control system
may be obtained by solving differential equations of the general form

64
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@ + busp™ + - - - + bip + bo)y(®)
= (amp™ + Gu-1p™ ' + - - -+ a1p + a0)z(t)

If the coefficient b, of the py(f) term is not unity, it is an easy matter to
divide each term by b, to yield the preceding form. Solving for y(t) gives

AnP™ + AGm1p™ 1+ - - -+ ap + a0
t) = { .
y() pn + bn__lpn—l + « .. + blp + bo () (5 1)
where ao, @1, . . . ,@nand by, by, . . . , bs are constants. The term z(?)

represents the excitation to the system. This is called the forcing func-
tion because it forces or excites the system. The output y(¢) is called the
response function because it responds to the forcing function z(f). The
denominator of Eq. (5.1) is the characteristic function of the differential
equation. The equation which results by setting the characteristic
function equal to zero is called the characteristic equation. The value of
the exponent n, the highest power of p in the characteristic function, is
the order of the differential equation. Itis now shown how Eq. (5.1) may
be written as the sum of first-order differential equations. First rewrite
Eq. (5.1) in the form

Ln(p)

t) = t 2
y(® = 7205y =0 .2

where Li(p) =p*+ baap™'+ + -+ +bip+ b

La(p) = @Gmp™ + @nap™ '+ - - - +arp + a0
The polynominal L.(p) may be factored into the form

Lu(p) = (@ —r)(p—12) - * - (P — 1a) (5.3)
where 71, 73, . . . , 7, are the roots of the equation L.(p) = 0. In

factoring the polynomial L,(p) as shown in Eq. (5.3), it is to be noted
that p may be treated as an algebraic quantity. For example, consider
the function

L.(p) =p>+3p+2=(p—r)(p—r) (5.4)
Setting L.(p) equal to zero yields
»+3p+2=0 (5.5)
The roots of the preceding equation are
rig = .__3__3__;/_9_—_?_ = —1 -2 (5.6)

Therefore, La(p) = [p — (= Dllp — (=2)] = (p + L)(p + 2).
Because 7y, 73, . . . , rs are the values of p for which L.(p) = 0, then
r1, T2, - . . , Tn are also called the zeros of the function L.(p). Thus, the
" roots of the equation L.(p) = 0 are the zeros of the function L.(p).
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The zeros of L,(p) are said to be distinct if each zero has a different value
(thatis, ry = ra # r3 # * - - ¥ r,). When two or more zeros are equal,
the characteristic function is said to have repeated zeros. The case in 4
which L,(p) has distinct zeros is considered first. '3
From the theory of partial-fraction expansion, it follows that for distinct
2er0s Ly (p)/L.(p) in Eq. (5.2) may be written in the form
La(p) _ K K. K,

+ -+ +...+K"

= 5.7
L.(p) p—-r1+p—rz p—r P —Ta 6.7)

The procedure for obtaining any constant K; is as follows: First
multiply both sides of Eq. (5.7) by p — r;, that is,

oy Im(@ _p— 1 p—ri
R v Bl R

_|_...+»K;.+..._|_p-

P—Ta

K. (5.8)

The multiplication of the K; term in Eq. (5.7) by p — r; is seen to cancel
the denominator, thus leaving K; alone as shown in Eq. (5.8). By letting
p = r;in Eq. (5.8), each term of the right-hand side of Eq. (5.8) becomes
zero except for K;, which remains. Thus

— : [ Lm(p)]
K: = lim | (p — ) 32°% 5.9
Successive application of Eq. (5.9), in which 7 =1, 2, . . . , n, yields
each of the constants K;, Kz, . . . , K., respectively, in Eq. (5.7). As

an example of the use of this partial-fraction-expansion technique, let it
be desired to expand L..(p)/L.(p), where

R TR e R ¢10
Application of Eq. (5.9) yields
ko= Jim, | @ +9 G5
- m 2o T0E
and K2=pli'111155128=:?1_g=3
Thus ﬁg}=pi2+pil (6.11)

The general form for expressing a differential equation as a sum of
first-order equations is obtained by substitution of Lu(p)/L.(p) from
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Eq. (5.7) into Eq. (5.2). That is,

K, K, K.
e U e e R O SR e 0
- z 2 al) = z Kaih) (5.12)
=1 t=1
where w® =5 20 (5.13)

Equation (5.13) is a linear differential equation of the first order. Its
solution is

y:(t) = e[ fezx(t) dt + ¢l
or yi() = ciet +etfemtx(f) di (5.14)

After performing the integration indicated in Eq. (5.14), the resulting
constant of integration will be multiplied by the term et which is in
front of the integral sign. Thus, the effect of the constant of integration
has already been included in the first term c.e of Eq. (5.14). Sub-
stitution of Eq. (5.14) into Eq. (5.12) yields the following general solution,

y(t) = i ket + i Kt / etz (t) dt (5.15) &
=1 i=1

where k; = ¢;K; is a constant. The terms in the first summation of the
right-hand side of Eq. (5.15) comprise the complementary solution, and
the terms in the second summation comprise the particular solution.
That is,

n

y® = ) ke (5.16) g
1=1

and yo(t) = Z Kier [ ez (l) dt (5.17) e
i=1

where y.(t) is the complementary solution and y,(¢) is the particular
solution.

Illustrative Example 1. Determine the solution for the following
differential equation

(*+2p = 3)ylt) = ¢ (5.18)
. 1 .
o RS,

Expanding the operator L, (p)/L.(p) in a partial-fraction expansion gives

K, K, ],
y(® =[p—1+p+g]‘ (5.19)
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The constants K; and K, which arise from the partial-fraction expansion
are

, . 1 - 1
K‘=l‘i‘}[<p“)m]=z

. 1
and Ky=lm o3~ "1

In Eq. (5.19), it is to be noted that r, = 1 and r, = —3; thus the com-
plementary solution may be written directly from Eq. (5.16).

\> Ye(t) = kient + koett = kiet + koo~ (5.20)
. The particular solution is evalug rom Eq. (5.17) as follows:

w yo(t) = Kietfe 2 dt + Kre—%fed? dt
: = Ve[~ + 2t + 2)] — Yoo | & (92 — 6t + 2)
27

2
__g_4a_u (5.21)

The total solution is the sum of Eqgs. (5.20) and (5.21). To evaluate
the constants k; and ks, two initiai conditions are needed.
Repeated Zeros. Suppose that the characteristic function L.(p) has a
multiple or repeated zero r which occurs ¢ times, i.e., A
Li(p) = (p—nUp —r)(@ — 1) -+ - (p — razy) (5.22)

For repeated zeros the partial-fraction expansion has the general form

# @ = Lp)ar:(t) = L) + Cor2(1) 4o+ Cx(®)

L.(p) -7 (p—rn? p—r
Kix(t) , Kux(d) L K. z()
+ p—r: + Py + + P ——— (5.23)
The constants K, Ks, . . ., K., are evaluated as before by application
of Eq. (5.9); however, the constants Cy, C,—y, . . . , Cy, which arise from

the partial-fraction expansion of the repeated zero, are evaluated as
follows:

— o= tim [ (o = 10 2]
Cos = lim [ p = e f=B] | (5.2
~  eemfgle-a iG]
Tllustrative Example 2. Determine the partial-fraction expansion for
L) _ 227 _ Gy O (5.25)

Lkp) (@+3* (@+3)* p+3

e

e e
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For this example, ¢ is equal to 2, so that

. 2p + 7 .
] 2 e e == =
) C. hm [(P +3) o+ 3)2] pl_l)ll_ls (2p +7)
and C, = hm [ @p + 7)] = lim 2 =2
d p— -3
Ln(p) 1 2
Th = 5.26
" L) G+ pt3 (5.26)

The portion of the response due to the term Ciz(t)/(p — r)} in Eq. (5.23)
is

s(t) = '—Lt)) (Co + e + -+ C,‘_lt"_l)e" \/
“— + Certf - - - ferz(t) @Y =23, ...,¢ (627 wg—
where co, €1, . . . 1, i1 are constants which must be evaluated from the

initial conditions. The first term containing the ¢ constants is the
complementary solution, whereas the second term on the right-hand side
of the preceding expression is the particular solution. The response due
to the distinet zeros in Eq. (5.23) and also the response due to the term
C.z(t)/(p — r) may be evaluated by application of Eq. (5.15).

Illustrative Example 3. Let it be desired to solve the following equa-
tion, in which z(f) = e, that is,

2 + 7 1 o

- T e T

Application of Eq. (5.27) to the first term on the right-hand side of the
preceding expression gives

yz(t) = (co + ert)e ™ + e—‘" [ fede—t dt dt
= (co + cil)e ™ + T

(5.28)

The response due to the second term is

yl(t) = kle"a‘ + 26_3‘_[63‘6_‘ dt
= b 4o

The total response y(¢) is the sum of the two precéding results, or
y(@®) = [(co + k1) + catle™™ + qe (5.29)

Two initial conditions are required to evaluate the constant ¢, + k1 and
the constant ¢;.

Numerous techniques such as the method of undetermined coefficients,
variation of parameters, etc., have been developed for solving linear
differential equations with constant coefficients. However, the method of

2
]
3
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Laplace transforms,~® which is next described, is best suited for solving
the type of problems which are of interest to control engineers. In
many ways, the Laplace transform method is similar to the preceding
method of using the partial-fraction expansion to reduce an nth order
equation to the sum of n lower-order equations. A major difference is
that, in the Laplace transform method, the response due to each term in
the partial-fraction expansion is determined directly from the transform
table. Thus, there is no need to perform the integrations indicated by
either Eq. (5.15) or Eq. (5.27). Because initial conditions are auto-
matically incorporated into the Laplace transforms, the resulting response
expression yields directly the total solution (i.e., complementary plus
particular solution). Thus, the constants arising from the initial condi-
tions are automatically evaluated, so that the final desired result is
obtained directly.

6.3. Laplace Transformation Method. This method of solving dif-
ferential equations is somewhat analogous to the process of multiplying
or dividing by use of logarithms. In the well-known transformation of
logarithms, numbers are transformed into powers of the base 10 or some
other base. This process in effect makes it possible to multiply and
divide by use of the simpler operations of addition and subtraction.
After obtaining the desired answer in logarithms, the transformation back
to the real-number system is accomplished by finding antilogarithms.

In the method of Laplace transforms, transformation of the terms of the
differential equation yields an algebraic equation in another variable s.
Thereafter, the solution of the differential equation is effected by simple
algebraic manipulations in the s domain (the new variable is s rather than
time #). To obtain the desired time solution, it is necessary to invert
the transform of the solution from the s domain back to the time domain.
Actually, for much econtrol work, information obtained in the s domain
suffices so that it may be unnecessary to invert back to the time domain.

The Laplace transformation F(s) of a function of time f(f) is defined
as follows, :

F(s) = @) = [” f®ye dt (5.30)
where £ is the symbol for taking the Laplace transform. The symbol £

M. F. Gardner, and J. L. Barnes, “Transients in Linear Systems,” John Wiley
& Sons, Inc., New York, 1942.

2J. A. Aseltine, “Transform Method in Linear System Analysis,” McGraw-Hill
Book Company, Inc., New York, 1958,

# R. V. Churchill, “Operational Mathematics,” 2d ed., McGraw-Hill Book Company,
Inc., New York, 1958.

¢ W. T. Thomson, ‘“Laplace Transformation,” Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1950.

8 E. J. Scott, “Transform Calculus,” Harper & Brothers, New York, 1955.
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is read as ‘“‘transform of” so that £[f(f)] means ‘“‘transform of f(¢).” For
the integral on the right side of Eq. (5.30) the variable ¢ vanishes after
evaluation between the limits of integration. Thus, the resulting expres-
sion is a function of s only [that is, F(s)]. A verification for Eq. (5.30)
is presented in Appendix I.

For most problems in control engineering, one is interested in solving
for the response of the system only after some arbitrary time { = 0. To
determine the response for ¢ > 0, it is necessary to know only the initial
conditions at ¢ = 0 and the input or forcing function for ¢ > 0. The
limits of integration for the transform of Eq. (5.30) show that only
positive values of time are considered.

Transforming Functions from the Time Domain to the s Domain. Some
input functions which are frequently used for investigating the character-
istics of a control system are the step function, pulse function, impulse
function, exponentially decaying function, and sinusoid. The manner in
which these time functions may be transformed to the s domain is shown

Afce)
k

°
R

F1a. 5.2. Step function.

in this section. In addition, in the transformation of a linear differ-
ential equation with constant coefficients, it is necessary to transform
the various derivatives to the s domain. In solving integrodifferential
equations such as Eq. (2.25), it is necessary to transform integral terms.
Thus, general expressions are also developed for transforming derivative
and integral terms.

Step Function. A graphical representation of a step function is
shown in Fig. 5.2. For positive values of time, the value of the function
is k [from Eq. (5.30); it is to be noted that only positive values of time
are of interest in obtaining the Laplace transform).

A step function is designated by the symbol hu(t), where & is the height
and u(t) is the symbol for a unit step function whose height is 1. Appli-
cation of Eq. (5.30) to a step function in which f(¢) = h for ¢ > 0 gives

}ﬂ © _ h(—e—'(“’) + e—n(o)) _k
s lo 3 T s
(5.31)

F(s) = £lhu(t)] = A et g = —




72 AUTOMATIC CONTROL ENGINEERING

- In evaluating a transform, the term s is regarded as any constant which
makes F(s) convergent. As illustrated by Eq. (5.31), if s is any positive
constant (s > 0), then e = 0 and ¢*° = ¢ % = 1 so that the result
follows. However, it should be noted, for negative values of s, that
e = ¢» = o, in which case F(s) would be divergent. As is dis-
cussed in Appendix I, the operator s must be taken as any constant such
that F(s) is convergent. Although there is a range of values of s over

TABLE 5.1. LAPLACE TRANSFORM PAIRS

A1) F(s)
- u =z |- :
— Cut) 1

_ 1
e $t+a
ot 1
[

8§ —«a
sin wt o _T_ e
o8 wl 0 8

82+ w?
i 1
al ,® e
{nge T

> ol L (8 — a)h?
kf(t) . kF(s)
Fu(t)  fo2) Fy(s) £ Fys)
F@ sF(s) — f(0)
(@) ~—s?F(s) — 3f(0) — f'(0)
7  8%F(s) — 8%(0) — sf'(0) — f"(0)
I(t) s"F(s) — s 3(0) — - - - — f*0)
) o 0
FEm(E) F% +f("::(0)
o (=n)
f__(s:’_(?) 4o +f_;(_92

fr) = f(t — &) e~*oF(3)

which F(s) is convergent, there is but one transform F(s) 'corresponding ‘
to each time function f(f). In Table 5.1 is shown a list of time functions
Sf(® and their corresponding transforms F(s). In solving problems by
Laplace transforms, the term s acts as a dummy operator, and thus there
is no need for knowing the range of values over which F(s) exists.

The listing of transform pairs [i.e., corresponding values of F(s) and
()] given in Table 5.1 is adequate for the solution of most problems which
arise in control engineering. The derivation of most of these transform
pairs is now explained. '
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Pulse Function. A pulse function is shown in Fig. 5.3. The height
of the function is & and the width ¢, so that its area is k. The Laplace
transform is obtained by applying Eq. (5.30), in which f(¢) = h for

O0<t<toand f(£) = O fort > ¢. .

Fs) = ﬁ “hevdt = h [“:"]; - % 1 —em) (532

A special case of a pulse function is an impulse function. By designating
the height as h = .k/t,, it follows that the area is always equal to k.
Now, as the width £, approaches zero, the height becomes infinite but
the area remains equal to k. This limiting case of a pulse function is
called an impulse. The symbol ku,(f) represents an impulse function
whose area is k. Substitution of h = k/t, into Eq. (5.32) and taking

f(t)

. 41e)
k 1
0 ¢ t 7] %
Fia. 5.3. Pulse function. Fia. 5.4. Exponentially decaying function.

the limit as #, approaches zero gives the following transform for an
impulse:

F(s) = lku(®)] = lim [s_’:o (1 — e-.,.,)] -9

Application of Lhopital’s rule for evaluating the preceding indeterminant
gives

oy dlk(l — e)]/dty . kseT
o = i G B -k o
The transform of an impulse function is thus seen to be equal to the area
‘of the function. The impulse function whose area is unity, u.(f), is
called a unit impulse. Much information as to the transient behavior
of a system may be obtained by determining the manner in which a
.System returns to its equilibrium state after the system has been excited
by a momentary disturbance such as a pulse or an impulse.
Ezponentially Decaying Function. The function f() = e~** is shown
in Fig. 5.4. Applying Eq. (5.30) gives the transform of this exponentially
decaying function.
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© . . g—(“‘*")‘ @ 1
F(s) = .,c(ef"‘) = [’ eletatdp = — aFsl aFs (5:39)

Stnusoidal Function. A sinusoidal time function is shown in Fig.
5.5. The equation for this sinusoidal is f(f) = sin wf. Thus

F(s) = £(sin wt) = foﬂ e gin wt di (5.35)
The preceding integration is simplified by making use of Euler’s equations.

e = cos § + jsin 0

e = cos § — jsin § (5.36)
Addition of Euler’s equations and division by 2 yields
1] —30
cos § = ﬁ% (5.37)

Subtracting the second of Euler’s equations from the first and dividing
by 27 yields

. et — ¢t

sin § = o (5.38)

The validity of Euler’s equations is proved by expanding e, sin 6, and

L f(2)

F16. 5.5. Sinusoidal function.

‘cos 8 by use of Maclaurin’s series. Thus

’ ejd —_ 1 +j0+ (.7-20!)2_'_ (.7.0)3+ (j0)4+ (j0)5+ e e .

31 4! 51
=(1_§+g_...>+j(o_g+g_;_...) o
cos0=1—§+§i—
si90=0—;;;+§—:—

The results of Eq. (5.36) follow directly from the preceding expansions.
Because the vector ¢/ is the vector sum of cos § + j sin 8, the magni-
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tude of ¢ is always v/cos? 6 + sin? § = 1. The physical significance
of the unit vector e’ is shown in Fig. 5.6. Here it is to be noticed that
¢ is a unit vector which is rotated counterclockwise an angle 8 from the

.real axis. Similarly, e=# is a unit vector rotated an angle —6 from the
real axis. For 6 equal to 90°, it is seen from the unit circle that e = j.
Squaring the preceding unit vector yields

jﬁ = ej90°ej90° - ej180°

From the unit circle, this vector is seen to be equal to —1. Thus,
j* = —1, which establishes the well-known result that j = v -1

4

~.

Imaginary
axis

Unit
circle .
sin 0¢— — — — — —

|
. I
e’ I
|
|
|
o 1€0s 6@ | Real
o : axis
|
e-# |
|
|
|

Fie. 5.6. Unit circle.

Substitution of the exponential form for sin 6 as given by Eq. (5.38)
into Eq. (5.35) gives

CF(s) = [)“’em—‘_.e T et dt

2j
o p—(e—jo)t — —(s+jw)e
= - dt
[, 2
1 1 1 ®
F(s)—2—j<s—jw—s+jw>—sz+w’ (5.39)

The response of a system to a sinusoidal forcing function forms the
basis for appraising the performance of systems by frequency-response
techniques, as discussed in Chaps. 9 and 10.
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Real Translation. The Laplace transform of a function Sf(&@) which
begins at some time ¢ = £, as shown in Fig. 5.7 rather than at £ = 0 may
be obtained directly by application of the real-translation theorem.
From Eq. (5.30), the Laplace transform for f(r) is

i) = [ f@evdi= [° frye dt (5.40)
By noting that ¢ = ¢, + 7, dt = dr, and the lower limit of integration

-~
/
f(t} / flr)
/
/
/
/
/
/7
b
—t |—7
. t=0 7=0
t=t,

F1a. 5.7. Delayed time function.

t = tycorresponds tor = 0, the preceding integral becomes

2lf@)] = A ® f@)estetn dr = gsto jo “f@eTdr  (5.41)
It is to be noted that

ﬁ,' f@edr = ﬁ)” f(®)e—*t dt = F(s)

where F(s) would be the usual transform of the function if it were not
delayed. Substitution of the preceding result into Eq. (5.41) gives

Llf(@)] = euF(s) (5.42)

An application of Eq. (5.42) is immediately evident by noting that
the pulse function shown in Fig. 5.3 may be regarded as a step function
of height A which begins at ¢ = 0 minus a step function of height A
which begins at ¢ = #,. The transform for the first step function is h/s,
while that for the delayed step function is (h/8)e~*s. Subtracting the
delayed step function from the first yields the following transform for
the pulse:

h . 8ty
;1 —e)
This is the result given by Eq. (5.32).

Transform of a Derivative. Any linear differential equation will of
course have derivatives of various orders. The order of each derivative
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is the same as the exponent of the operator p in the operational representa-
tion of the term. The general expression for transforming derivatives
is obtained as follows:

Letu = f(f) andv = —e~*/s;thendu = (d/dt)[f(t)] dtand dv = e dt.
Integration by parts yields

Judv = w — [vdu
Substitution of the preceding values for 4 and » and integration
between the limits of zero and infinity gives

[) " f()e dt = —f(t)‘i_s-'—‘ : 4+1 A ) % ferdt  (5.43)

8

The left-hand member of the preceding expression is seen to be F(s).
For ¢ equal to infinity, the upper limit of the first term on the right-hand
side goes to zero. Thus

F(s) = f_(_O_) + 1 / © d——[f(t)] e dt

- 10 (0) + 3 .,e [d{i(tt)] (5.44)

where the initial condition f(0) is the value of f(t) for ¢ = 0. Therefore
2| L] - et = k) - 50 (5.45)

By the extension of the preceding techniques to higher derivatives, the
following equations for transforms of higher derivatives are obtained,

LU0 = $F(s) — of(0) = f/0)
£l (@) = $F(s) = s4(0)—5f'(©) - 1(0) (5.46)
SO = #F@) — sf(0) — - - - — f-3(0)

where f'(¢) = df(t)/dt, () = d>f()/de2, . . ., f~(t) = d*f(t)/dt*, and
f/(0) is the initial value of f'(f) at ¢ = 0, etc. The initial conditions f (0),
f(0), f7(0), . . . associated with a particular differential equation must,
of course, be given.

An interesting result is obtained when Eq. (5.45) is applied to the
function shown in Fig. 5.8. The initial value of this function is £(0).
Because of the step change of height ., the value of the function for
t>0ish = k. + f(0).. The transform of this function is

F(s) = 2lf(®)] = £{[he + fO)u(®)} = ’L&f@)

Application of Eq. (5.45) to obtain the transform of the derivative of
this function gives
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2| 550] = F@ —10 = LEIO _ g0 b an

The preceding transform is the same as that obtained for an impulse
function. Thus, the derivative of a step change is an impulse function
whose area is equal to the change in height A, of the step.

Transform of an Integral. In using the Laplace transform method to
solve integrodifferential equations, it is necessary to obtain the trans-
form of an integral. The procedure for obtaining the equation for the
transform of an integral is similar to that for a differential. In the

f(e

h=h +f(0) T

f(0)--—l-

o

=

Fic. 5.8. Step function.

general expression for integration by parts let u = [f(f) dt = f&V(¢f) and
dv = e~ dt. Then application of the equation for integration by parts
yields

elfene) = L& L [0 (5.48)

8 -8

where f&V(f) = [f(t) dt and fCV(0) = [f({t) dt 10 is the constant of

integration which results from integrating f(?).
By the repeated application of this procedure, it is found that

elren@) = £ s(f) + f“:z(O) + f<—=*s>(0)

8 ) o (5:49)
glpem@) = FO L 1700 L 120 L 20

8" ) sn——l s

where fE»() = [ - - - [f(® dir, F-2(0) = [[f(t) dt? i0 is the second

constant of integration which results from the double integration of f(f),
ete.

Linearity Theorem. The linearity characteristic of Laplace trans-
formations is a very useful property. If k is a constant or a variable
which is independent of both ¢ and s, then it follows from Eq. (5.30) that

Llkf(B)] = kL[f(®)] = kF(8) (5.50)
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Another important linearity property is
L) £ f2()] = Fi(s) £ Fafs) (5.51)

5.4. Application of Laplace Transforms. Let it be desired to trans-
form from the time domain to the s domain the following linear differ-
ential equation. (When K = 1, then this equation describes the opera-
tion of the servomotor shown in Fig. 3.1.)

(rp + Dy(t) = Kx(?) (5.52)

For convenience in using the transform tables, it is desirable to have the
coefficient of the highest power of p in L.(p) unity, thus,

1 K '
(v +2) w0 - Zat0 (5.53)
The Laplace transform of each term in this differential equation is
Llpy®)] = [sY(s) — y(0)]
1 1
e[vo] - trw
e [5 x(t)] - Exe
T T

The capital letter with s in parentheses indicates the value of the
parameter in the s domain. Transforming each term of the differential
" equation for the system yields

G+5Y®=§X@+mm

or O Y(s) = (K/ T)SX_}(_S)I/-E y(0) (5.54)

For the case in which all the initial conditions are zero, from Eq. (5.46)
Llp*f(®)] = s"F(s), and thus it follows that the substitution of s for
p, Y (s) for y(t), and X (s) for 2(¢) yields directly the transformed equation.

The symbol j‘(s) is the transform of the input. The nature of the
expression X (s) depends upon the particular input to the system, such
as a step function, exponential, sinusoidal, ete. The value of ¥(0) which
is y(t) evaluated at { = 0 depends upon the initial condition of the system.

Let it be desired to determine the response y(t) to the input function
z(t) shown in Fig. 5.9a. The initial value is £(0) = 0, and then a step
change h. occurs so that the height of this function is A = h..

Application of the linearity theorem to the step input gives
k_ he
s s

X(s) = Llhu(®)] = (5.55)
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FiG. 5.9. Response of a first-order system to a step input.
Substitution of the preceding result into Eq. (5.54) yields
Y(s) = Kh./rs + y(0) _ Kh./7 + sy(0)

s+1/r  s(s+1/r) (5.56)
The partial-fraction expansion for Y (s) is
Y(s) = Kh, _ Kh. — y(0) (5.57)

8 s+ 1/

To invert Eq. (5.57) from the s domain back to the time domain, it is
to be noted that
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1 ey 1
SOl = Y)  Su@® = ) = ;o
Thus, the inverse transform of each term designated by £~ is
| | — — 1 — — 1 — p—a
e =10 e (3)-u0 () e 659

The inverse transform of Eq. (5.57) is
y(t) = Kh, — [Kh. — y(0)]e*/ t>0

This result has meaning for positive values of time only. It may be
written in the form .

y() = Kh(l — e*7) 4+ y(0)e~r t>0 (5.59)
Steady state exists when all of the time derivatives are zero (that is,
pry=pz=0,n=1,2,3,...andm =1,2,3,...). Thus, if the

system was initially at a steady-state operating condition so that
py(0) = 0, then from Eq. (5.53) it follows that y(0) = Kx(0). Because
z(0) = 0 and y(0) = Kz(0) = 0, all the initial conditions are seen to be
zero. Hence, the preceding expression becomes

y@) = Kh.(1 — et7) t>0 - (5.60)

A graph of this result is shown in Fig. 5.9a.

Let it now be desired to determine the response for the case in which
the initial value of the input x(0) is not zero, asis shown in Fig. 5.95. The
total height & of the function is (0) plus the step change k.. The trans-
form of this input is

X (8) = Llhu@)] = Lh. + z(0)]u(t) = @c_—l—sx_(()) (5.61)

Substitution of the preceding value for X(s) into Eq. (5.54) gives the
following transformed equation for Y (s):

Y(S) _ K[h'c + x(O)],/TS + ?/(O) _ K[hc + .’L‘(O)]/T + 81/(0)
B s+ 1/7 h s(s + 1/7)

The partial-fraction expansion gives

Y(s) = K[k, -: z(0)] | ¥(0) —8 Ii[hf/j- z(0)]

Inverting the preceding expression yields the desired response
y(t) = K[h. + z(0)] + [y(0) — Kh. — Kz (0)le~t" (5.63)
If the system is initially in a steady-state condition at { = 0, then

(5.62)
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Kz(0) = y(0) so that the response is
y(&) = Kh(1 — e¥7) - y(0) t>0 (5.64)

The first term on the right-hand side of the preceding expression is seen
to be the response due to the step change h. alone, and the last term is
the initial value y(0). For a system which is initially at a steady-state
operating condition, the response may be obtained by merely adding the
tnitial value y(0) to the response for the case in which all the initial conditions
are zero. :

The response to a delayed input as shown in Fig. 5.9¢ is obtained as
follows: Application of Eqgs. (5.42) and (5.45) for obtaining the transform
of the derivative for a delayed time function gives

2| LA = 1606) - st
and in general '

L) = [s"F(s) — s»f(to) — - - - = f~')le™  (5.65)

Thus, to convert a transform to a delayed transform, multiply each term
by e~%*, and evaluate the initial conditions at ¢ = ¢, rather than ¢ = 0.
The delayed transformed expression corresponding to Eq. (5.62) is

—tos — {K[h. + z(to)] /T + sy(to) }e—to
vl = s(s + 1/7) (5.66)

Performing a partial-fraction expansion yields

e = Kb 2lem | {y9) = Klhe 4 stelje

Thus, the time solution is
y(¢ — to) = Klh. + z(to)] + [y(ta) — Kh, — Kz(ts)le-¢*Ir  (5.67)

If the system had initially been at a steady-state operating condition
so that y(t)) = Kz(ty), then Eq. (5.67) would reduce to

y(t — to) = Kh(1 — e~ —®/7) + y(to) t> 1t (5.68)

By comparison of Eq. (5.67) and Eq. (5.63), it should be noted that
the substitution of ¢ — ¢, for ¢ gives the effect of translation by an amount
t. It is not necessary that the system be initially at a steady-state
operating condition to effect a time shift by substituting ¢ — ¢, for .
For most problems in which a time shift occurs, it is more convenient to
work the problem initially as though there were no time shift and then
substitute ¢ — ¢, for ¢ to obtain the desired result.

The general procedure used to solve differential equations by Laplace
transforms may be summarized as follows:
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1. Transform each term of the differential equation from the time
domain to the s domain, and solve for Y(s).

2. Substitute the value of the initial conditions and the transform of
. the input into the expression obtained in step 1.

3. Perform a partial-fraction expansion.

4. Invert each term back to the time domain to obtain the desired time
response.

Much simplification in carrying out the algebraic manipulations of a
. Laplace transform solution is afforded for the following special cases:

1. If the system is initially at steady state [that is, py(0) = pmz(0) = 0,
nm=1,2 ... ;and thus y(0) = Kz(0)] and in addition if

y(0) = Kz(0) = 0

then all the initial conditions are zero. For this case, the transform is
obtained by merely substituting s for p and ¥(s) for y(f) and X(s) for
z(t) in the original differential equation.

2. If the system is initially at steady state but y(0) = Kz(0) = 0,
then the response is obtained by adding the initial value y(0) to the
result obtained for case 1 above.

3. A time shift is effected by substituting ¢ — ¢, for £. It is not neces-
sary that the system be initially at a steady-state operating condition to
effect a time shift.

Illustrative Example. Determine the response of the following dif-
ferential equation to a unit step function when all the initial conditions
are zero:

@+ 7p + 12)y(®) = (p + 2)z(?) (5.69)

Because the initial conditions are zero, substitution of s for p, ¥(s) for
y(t), and X (s) for z(¢) yields

Y(s) = (s + 2)X(s) _ s+ 2
824+ 7s+ 12 s(s?+ 7s + 12)

(5.70)

where X(s) = 1/s for a unit step function. Performing a partial-frac-
tion expansion gives

v = 5 oy Fe (5.71)
where K, = .I’LII(I) % =f_15

K = Jim, 8(88—:-24) 5

K. = sll»m4 8(88-'1_-23) %
Thus Y(s) = 61—3 + 56 fl_ 5~ 56 fl_ 5 (5.72)
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Inverting the preceding expression gives the desired time response

y(@t) = %6 + Lie=* — Lo (5.73)

If initially 2(0) is not zero but the system is at a steady-state operating
condition $o that p2y(0) = py(0) = pz(0) = 0, then from Eq. (5.69)
12y(0) = 22(0). The response is

y(t) =36 + Ve — Lse 4 + y(0) (5.74)

A time shift by an amount £, can be effected by merely substituting
t — i for t.

5.5. Final-value Theorem. This theorem enables one to obtain the
value f(¢) of a time function at ¢ = o« directly from the Laplace trans-
form F(s). This is in effect the same type of information which is
obtained from a steady-state analysis.

To develop the final-value theorem, first write the equation for the
transform of a derivative in the form

[\ 7' e dt = sF(s) = £(0)

For s equal to zero, e=* = 1, thus,

Jo" 7@ dt = [sF@)mo ~ 1(0) (5.75)
The preceding expression may be written as
Jor@a =5 = lim (70 - 70 (5.76)

The desired final-value theorem is obtained directly from Eqs. (5.75)
and (5.76), i.e.,
lim f(2) = [sF(8)]owo ‘ (5.77)

Application of the final-value theorem to Eq. (5.56) gives -

. _ Kh./r + sy(0)
:IEE ¥ = s+ 1/7 s=0

This is the result that is obtained by substitution of ¢ = « into Eq. (5.59).
The value of y(f) at { = « has no significance when y(¢) is a pure sinusoid
or when y(f) becomes infinite, and so in these cases the final-value theorem
is meaningless.

Initial-value Theorem. With the aid of the initial-value theorem, the
value f(f) of a time function at { = (0-+) may be computed directly
from the transform F(s) for the function. It is to be noted that f(0+)
is not the initial value but rather the value of the function at a time
slightly greater than zero. Response equations obtained by Laplace

= Kh, (5.78)
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transforms are not valid for ¢ = 0, but only for¢ > 0. For most response
functions f(0+) is equal to f(0); however, when a step change occurs at
t = 0, then f(0) = f(0+).

The derivation of the initial-value theorem follows: For ¢ = 0, then
e~ = 1; thus the equation for the transform of a derivative can be
written as

dr@ = [T rowas [ roerd = sFs) —10) (579

As s approaches infinity, e~* = 0, which makes the second integral vanish.
Letting s — « in Eq. (5.79) gives

JO+) = £(0) = lim sF(s) ~ 5(0)
or ) f(04) = lim sF(s) (5.80) e

Equation (5.80) is the initial-value theorem. Application of this initial-
value theorem to Eq. (5.56) gives

_ [ Kho/rs + y(0) _0+y0) _
y(0+) - [ 1 + 1/1'8 ]‘-ﬂ° - 1 + 0 = 1/(0)

This merely indicates that there is not a step change in y(¢) at ¢ = 0.
The step function shown in Fig. 5.8 illustrates the case in which a step
change does occur at ¢ = 0. Application of the initial-value theorem
gives

= h, + z(0) (5.81)

2(0+) = [8X(8)]sme = s[h_tw(O_)l

Thus, a step change of height k. is seen to occur at ¢ = 0.

5.6. Input Functions Which Are Piecewise Continuous. A piecewise
continuous function is characterized by the fact that the equation for
the function changes from interval to interval as is illustrated by the -
functions in Fig. 5.10. For example, in Fig. 5.10a for 0 < t < t;, then
z(Y) = at; and for ¢ > #,, then x({) = at,. For the first interval 0 <
t < to, the input function is inclined at a slope a. Such an inclined
straight line is called a ramp function. For ¢ > ¢, the input is seen to
be a step function. The solution of such problems is effected by starting
with the first interval and successively solving for the response in each
interval.

Let it be desired to solve Eq. (5.52) for the case in which the input is
that shown in Fig. 5.10a. From the transform table, the transform for
t/nl is 1/s**1; so for n = 1, it follows that £(at) = a/s%. Thus, the
transform X (s) for the input is

X6 =4 (5.82)
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Substitution of the preceding result into Eq. (5.54) gives
Ka/rs* + y(0) _ Ka/r + s*%(0)

Y(s) = s+ 1/r = si(s+1/7) (5.83)
A partial-fraction expansion of Eq. (5.83) gives
LG, G, K
Y6 =G+t (5.84)
where from Eq. (5.24)
o _ .. Ka/t + s%(0) _
C, = 1:11(1)82Y(s) = 11_'11(1)————~8 Tin = Ka
_ o @ _ 1 (84 1/7)2sy(0) — [Ka/r + s%y(0)]
Cr = lim 3, 67 ()] = 1 G+ 1/7)
—Ka
=. —-I/T#- = —Kar
K= lm [(s + }) Y(s)] = Kar + (0)
Substitution of these constants into Eq. (5.84) gives
_ Ka _Kar | Kar + y(0) ‘
Y6) =~ et T in (5.85)

Inverting the preceding expression gives the desired response for
0 < t S 'to,
y(@) = Kat:— Kar + [Kar + y(0)]et"
: = Kat — Kar(1 — e~t") 4+ y(0)e—*" 0<t<Lty (586)

For the second interval the input is a step funetion. From Fig. 5.10a,
it is to be seen that the initial value z({,) is af,. Because there is no
change in the height of this function from its initial value, k. equals
zero. The step-function response for this system has previously been
determined and is given by Eq. (5.67). The substitution of x(t) = at
and k. = 0 into Eq. (5.67) gives

y(t — to) = Katy + [y(te) — Katole= ¢ t> 1t (5.87)
The value of y(f,) is obtained by letting ¢ = £ in Eq. (5.86).
y(ts) = Katy — Kar(1 — e%7) 4+ y(Q)e /" (5.88)
Substitution of this result for y(f,) into Eq. (5.87) gives

y(t — ) = Kato + [—Kar(l — /) + y(0)e-tlle=-wir
= Katy — Kare~tir(evl” — 1) 4+ y(0)e~t/" t>t (5.89)
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In this method, the initial conditions for a new interval are obtained by
evaluating the equation for the preceding interval at the value of time
when the preceding interval ceases and the new one begins.

0 3t, 4, ¢t

|
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F1c. 5.10. Piecewise continuous functions.
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Z

Fiac. 5.11. Sum of two ramp functions.

Ax(t)

o

An alternate method for solving piecewise continuous problems is to
regard the input as being the sum of separate functions as is illustrated
in Fig. 5.11. That is, the sum of the ramp function which begins at
t = 0 and the equal but opposite ramp function which begins at ¢ = &
is seen to yield the function of Fig. 5.10a. Similarly, it is possible to
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represent any piecewise continuous function as the sum of other functions
which are continuous.

The transform for the first ramp function of Fig. 5.11 is a/s?, and that
for the delayed ramp function is —(a/s?)e~**. Thus, the transform
X (s) for the input is

X(s) = is'; - g-, —tas (5.90)

Substitution of the preceding result into Eq. (5.54) gives

Ka/rs* + y(0)  (Ka/rs?)e
s+ 1/7 s+ 1/r

Because of the delaying factor e~ the second term on the right-hand
side of Eq. (5.91) should be ignored for ¢ < ¢. Thus, for 0 < ¢ < &, the
transform is the same as that given by Eq. (5.83). The corresponding
response for 0 < ¢ < {, is given by Eq. (5.86). For ¢ > #, the response
is the sum of that due to the second term of Eq. (5.91) plus that already
obtained for the first term [Eq. (5.86)]. By noting that the second term
of Eq. (5.91) is the same as the first with the exception of no initial-
condition term y(0), the response due to the second term is obtained by
letting y(0) = 0 in Eq. (5.86) and substituting ¢ — ¢, for ¢ to take into
account the time shift. Thus, for ¢ > {, the total response is

y(t) = Kat — Kar(‘l —_ e—‘/r) + y(o)e_‘lr
- [Ka(t - to) - Ka‘r(l - ef(t-to)lr)]
or y() = Kat, — Karet"(evl* — 1) + y(0)e™/" (5.92)

An advantage of this second method of solution is that initial condi-
tions appear only in the transformed expression for the first interval.
However, in this latter method, the amount of computational effort
increases with the number of separate functions required to make up the
over-all piecewise continuous function. Thus, the choice of the first or
second method depends on the particular problem to be solved. (In
Appendix II, it is shown how the convolution integral may be used to
determine the response to any arbitrary input function.)

Y(s) =

(5.91)



CHAPTER 6

THE CHARACTERISTIC FUNCTION

6.1. General. Because an actual system may be subjected to all types
and varieties of input excitations z(¢), it becomes impractical to calculate
the system response for every possible excitation. In this chapter, it is
shown that a very good measure of the transient behavior may be
obtained directly from the zeros of the characteristic function (i.e., roots
of the characteristic equation). This criterion for evaluating transient
performance is obtained by considering the essential characteristics of a
general system of order n.

The general operational representation for a differential equation of
order n is :
AnP™ + Gm1p™ '+ -+ -+ a1p + a0

P+ baip™t+ - - - +bip + bo =) 6.1

The transform of each term is

Llpry()] = *Y(s) — I(s)a
ba1L[p" Y (B)] = ba-18"1Y(8) — I(8)a
anl[pz(t)] = ams™X(s) — I(s)m
a1 L[p™ ()] = Gm-15"X(s) — I(8)m—1

........................

y@) =

where I,,, I.—;, . . . represent the initial conditions associated with each
transform. Transforming each term of Eq. (6.1) accordingly and
collecting terms yields

Y(s) = (@ms™ + am_38™ 1+ - - - + a8 + a0)X(s) + I(s)
st 4+ bn—lsn—l + -+ b18 + bo
_ Ln(8)X(s) + I(s)
L(s)

where I(8) = I(8)n + I()a—1+ - * * —I(8)m — I(8)m—1 * * - is the sum

of all the initial conditions. By comparison of Eqs. (6.1) and (6.2), it is

to be noted that the form of the characteristic function in the s domain,

L,(s), remains the same as that in the p domain, L,(p). The numerator

also has the same form with the exception that the initial conditions I(s)
89

(6.2)
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are added in the s domain. Comparison of Eqgs. (6.1) and (6.2) shows
that, when all the initial conditions are zero, the transform is obtained by
merely substituting s for p, Y (s) for y(t), and X (8) for (D) in the operational
Jorm of the differential equatum

For this case

Ln(s) T/ y
Y(s) = o(s) X(s ) 6.3)

where Ln(s)/La(s) is called the transfer function. It is to be noted that
L..(s) and L.(s) are obtained directly from the differential equation of
operation for the system. Thus, the transfer function contains basic
information concerning the essential characteristics of a system without
regard to initial conditions or excitation.

The term X (s) in Eq. (6.2) is the general representation for the trans-
form of the input signal or forcing function. This term may be written as

NX(c)

X(8)

X(s) =

where Nx, is the numerator of X(s) and Dx, is the denominator of

X(s). For example, for a unit step function, X(s) = 1/s so that

Nx@ = 1 and Dx¢ = s. Substitution of the preceding representation

X(s) = Nx@w/Dxwu into Eq. (6.2) yields the following general trans-
formed form for Y (s),

Y(s) = Ln(s)Nxw + 1(s)Dxwy _ A(8)

L.(8)Dx ) B(s)

6.4)

where A(s) and B(s) are polynomials in s.

6.2. Transforming from the s Domain Back to the Time Domain—
Inverse Transformations. By an inverse transformation is meant the
process of inverting a function from the s domain back to the time domain.
The inverse transform £~ of a function F(s) is defined by the equation

£-F(s)] = 11 / F(s)e* ds = f(f) (6.5)

where C is a suitably chosen contour in the s domam. This integral
method of evaluating the inverse transform is not employed when the
much simpler process of entering a transform table with the given F(s)
and reading directly the desired f(f) can be utilized, as is the case for
ordinary control analysis. A partial listing of commonly used trans-
forms is given in Table 5.1.

The transform table may be used to obtain the Laplace transform F(s)
of a given function of time or to obtain the inverse transform f(z) for a
given function of s. This process is analogous to the use of a logarithmic
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table for obtaining the logarithm of a number or to the use of the same
table for the opposite process of obtaining antilogarithms.

At first it would appear that the listing of transforms given in Table 5.1
. would have to be extended considerably so that it would be applicable
to the wide range of problems encountered in the design of systems.
However, this is not the case. The listing given in Table 5.1 is adequate
for the solution of most ordinary problems that arise in control engineer-
ing. The reason for this is that there are relatively few different types
of terms which appear in the differential equation after it has been
expanded by a partial-fraction expansion. In particular, the zeros of
B(s) are either distinct or repeated.

Distinct Zeros. The transformed function B(s) is the denominator of
Eq. (6.4). When the zeros of B(s) are distinct, the denominator B(s) can
be factored in the form

B(s) =(—r)(s—r) - - (s8—14) (6.6)
where 7y, 72, . . . , s are n distinct zeros of B(s).
The partial-fraction expansion of Eq. (6.4) is of the form
. a— Kl K2 . . - K'. . - - K']
Y(s)_s—r1+s—rz+ +s—r,~+ +s—r,. 6.7)
where K1, K, . . . , K. are n constants. Each constant K; may be

evaluated by the method used to obtain Eq. (5.9). That is, first multiply
both sides of Eq. (6.7) by s — r;; then take the limit as s approaches ;.
After performing these operations, the only term remaining on the
right-hand side of Eq. (6.7) is K;. Thus

K; = lim [(s — 1) ¥ (&)] ©.8)

The inverse transform of Eq. (6.7) is obtained directly from the trans-
form table and is

y(t) = Kleﬂ‘ + ng"‘ _l_ PN + Kner,.l : (6_9)

Equation (6.9) shows that each distinct zero of B(s) = La(s)Dxw ytelds
an exponential-type term Ke'* in the response function. The exponent r;
is the corresponding zero of B(s). Each zero ri, 75, . . . , r» must be
negative in order that each term K. in y(f) be a decaying function.
If any zero of B(s) is positive, y(f) will increase without bound as ¢
increases to infinity. A constant term results if r; = 0, because
Kt = K;. .

Repeated Zeros. For the case in which B(s) has a multiple or repeated
zero r which occurs ¢ times, B(s) may be factored in the form

B(i)=(s—1) s —ri)(8 —1r3) * + * (8 — Tuy) (6.10)
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The corresponding partial-fraction expansion for Y(s) is

=G, Con .. Gy
‘Y(s)_-(s—r)¢+(s—qr)9‘1+ +s—r
K, K o ... _Kuyq
+8Tr1+s—r2+ +s—'-r,,_, ©.11)

The constant coefficients for the multiple terms are evaluated as follows:
Cy = lim [(s — r)?¥(s)]

Cens = tim { £ (6 - v ) (6.12)
Cou = lim |05 6 = ¥ )

From the transform table, the inverse transform of Eq. (6.11) is found to

be
Y(t) =

Chele | C, g% ...y Cater .
w-D1 T G=21 T+ e

+ Klent + Kzerzl + .« .. + Kn_qer"_“‘ (6.13)

Each response term associated with the repeated zero (s — r)7is seen
to be multiplied by the exponential factor e®. If the value of r is posi-
tive, y(¢) will become infinite as time increases. For negative values of
r, a decreasing exponential results, and thus the response term due to the
repeated zero eventually vanishes.

Illustrative Example. Let it be desired to determine the time response
y(?) for the transformed equation

11s 4+ 28 C, C K,

YO = 61 - 6FiTstatezs 619
The constants are evaluated as follows:
€= Jm, i -2
o A0 - 2O gem
K= i Gy =
Thus, Y(s)=(s-f2)2+s-?—2_s-?-5

By use of Table 5.1, the inverse transform of the preceding equation is
found to be
y() = 2te® 4 3% — 3e~B
or y) = (2t 4+ 3)e~2t — 3¢5 (6.15)
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6.3. Complex Conjugate Zeros. Complex zeros of B(s) always occur
in pairs, and furthermore these zeros are always conjugates of one another.
That is, they have the same real part but equal and opposite imaginary
parts. Thus, if the polynomial B(s) has a complex zero a + jb, the
complex conjugate a — jb will also be a zero of B(s). Although the
preceding discussion of distinct zeros is also applicable to complex
conjugate zeros, the following analysis brings out more clearly the fact
that a pair of complex conjugate zeros in B(s) combine to introduce an
exponentially damped sinusoidal term in y(¢).

A pair of complex conjugate zeros when multiplied together yield the

following quadratic: o %

(8 —a—jb)(s — a+ jb) = s — 2as + (a% + b?) 7(6.16) <

For any given quadratic term, the values of a and b may be computed
by equating coeflicients of like terms as follows: Consider the expression s?
+ 48+ 9. The coefficient 4 of the s term is equal to —2a so that —2a = 4
ora = —2. Similarly equating the constant terms gives a2 4+ b2 = 9 or
b =4/9 —4 = /5. Because of the square root, b may be either posi-
tive or negative. For convenience in working numerical problems, only
the positive value is used. If in the determination of b it is found that b
is an imaginary number, the two zeros are real and unequal rather than
complex conjugates. For example, in the expression s? 4 8s + 12 the
value of a is equal to —4 so that b = /12 — 16 = j /4 = j2. For
this case, the zeros are a + jb= —4 + (j22) = -4 F 2 = —6, —2.
Because the case of real zeros has been previously discussed, in the follow-
ing analysis it is assumed that b is real so that the zeros are complex

conjugates.
Suppose that B(s) may be factored in the form
Bs)=(s—a—gb)(s—a4+b)(s—7r) + (8 — raz2) (6.17)
The partié,l-fraction expansion for Y (s) = A(s)/B(s) is of the form
Y(s) = s — Ia{c— jb + 8 —Ii—-ci- jb + 8 I—(ln Tt s Ifn;:_z (6.18)
The inverse transform of Eq. (6.18) is .
y(t) = Kot L K_ et 4 Kient 4 . . . 4 Kg et (6.19)

The constants K. and K_. associated with the complex conjugate
zeros are evaluated as usual for distinct zeros by the application of Eq.
(6.8). That is,

- T I A(s)
K.= ..l.‘fﬂjb[(s =) e G —aF =) (s—r,._,)]

. 1 . A@s) 1 :
- dm s e e map ket 60

<
)c7
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where
K(a + jb) = ,—»lj,ﬂ-ljb (s — 1) -1-1(:3)(3 — Tu2)

= [(sz — 2as + a® + b?) ‘;Eg]._‘ s
Similarly, the constant K_. is obtained as follows:
K.,= Hliun_ljb [(s —a+jb) G—a—sb)G—a {j-szzs—n) R (s—r..—z)]

- c—E:IEjb (—12jb) (s — 1) '4(.’9)(8 =T 2—;.—5K(a — 62D

where K(a — jb) = Hlin_ljb G —r) -4(?)(3 — Tn-2)

= [(32' — 2as + a® + b?) ggg]‘_&_jb

The constants K(a + jb) and K(a — jb) are complex conjugate num-
bers. These complex numbers may be represented as shown graphically
in Fig. 6.1, whence

K(a + %) = |K(a + jb)le* ©.22)
K(a — jb) = |K(a + jb)|e~ : ’

where |K(a + jb)| = |K(a — jb)| is the length of either vector,  is the
angle of the vector K(a + jb), and —a s the angle of the vector K(a — jb).
{U'
|

K (a'+jb)
|

|
l _ Real
I T axis
—-a
|
!
K (a'— jb)
|

Fia. 6.1. Vector representation for K(a + jb) and K(a — jb).

The constants K, and K_,, which are also complex conjugate numbers,
may be written in the form

K. = o |K(a + b)le
J . (6.23)
K_,: = - 2—jb |K(a + ]b)le—"’
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Substitution of K, and K_, from Eq. (6.23) into Eq. (6.19) gives

1 . eitta) _ o—j(bt+a)
y@) = 3 |K(a —}—]b)[eal 5 + Kient + -+ 4+ K, e+
or ’
y(t) = '1" IK(G + jb)leat sin .(bt + a) + Kle"lt + e . + K,._ze'ﬂ'“ (6.24)
b

Illustrative Example. Determine the inverse transformation of the
following transformed equation:
Y(s) = 20

(s 4+ 4s + 13)(s + 6)

soLUTION. Equating coefficients to obtain the value of a and b for the
quadratie yields —2a = 4, or a = —2, and a? + b2 = 13, or

b=+13-4=3

Evaluation of K(a + jb) gives

T o As) :
K+ jb) = [(sz 2as + a* + b?) B<s>]..a+,1. S
{20 20
- (s + 6>.=—2+j3 4+ (©29)
The magnitude is
. 20
K DY = —— =40

Similarly, the angle « is

a = % K(a + jb) = tan™! imaginary part of K(a + jb) </

real part of K(a + jb),

— O -~45C
g 20 20 4o B0 -s0) . 20(
4 4 53 443534 — 33 b +9 25
= X 2045(4 — j3) = tan~! —34 = —36.8° (6.26)
ge . 5 34
The general form of the inverse transformation is s s " &
y(t) =+ |K(a + bl sin (bt + ) + Kot -<-

Evaluation of K, gives

K: = lim 20 __20_

,_,_6s2+4s+13'%“°'8

Thus the desired result is
y(t) = %4e% sin (3t — 36.8°) 4 0.8¢~%
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Equation (6.24) shows the exponentially damped sinusoidal term
which results from complex conjugate zeros of B(s). The exponential
factor a is the real part of the complex conjugate zeros. The imaginary
part b is the frequency of oscillation of the exponentially damped sinusoid.
Thus, b is referred to as the damped frequency of oscillation. The
period of each oscillation is 2xr/b. The envelope of this sinusoid is
(1/b)|K(a + jb)le®. To have the exponential term decreasing with time,
it is necessary that a be negative. For the case in which ¢ =0, a

4J ¥

X

—_————— e ————

» Real
0  axis

-3
Sl A n——

[~}

f

e

3 l . l 5] at
N 1 = | K (a+jb)| +|K(a+jb)| e
- {\glK(ﬂﬂnle“‘ —Lb b NS

/\\ \7'\:

F1G. 6.2. Response terms that result from complex conjugate zeros.

sinuéoid of constant amplitude (1/b)|K(a + jb)| results. For a = 0, Eq.
(6.24) becomes

y() = % [K(a + jb)| sin (bt + @) + Kient + - - - 4 K, _set (627)

In Fig. 6.2 is graphically illustrated the type of time-response terms that
result from complex conjugate zeros. When the zeros lie to the left of the
imaginary axis (¢ < 0), a decreasing sinusoid results; when the zeros are
on the imaginary axis (a = 0), a sinusoid of constant amplitude results;and
when the zeros are to the right of the imaginary axis (¢ > 0), an increasing
sinusoid results.

In Fig. 6.3 is shown a plot of the type of response terms that result from
real zeros. These results follow directly from Eq. (6.9). Because the
exponential factor is the value of the zero, a negative zero (r; < 0) yields
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an exponentially decreasing term, while a positive zero (r; > 0) yields an
exponentially increasing term. A zero at the origin (r; = 0) resultsin a
constant term. Even though a zero may be repeated the exponentlal
term dominates the response.

3 3¢ . Real

Ke"it /Ki

0 » 0
r, <0 ¢ r.=0 ¢ r>0

3 3 3

LA )

F16. 6.3. Response terms that result from real zeros.

6.4. Damping Ratio and Natural Frequency. A pair of complex
conjugate zeros may be specified by the damping ratio ¢ (zeta) and the
natural frequency w, rather than by the real part a and the imaginary
part b. As is later shown, the damp-
ing ratio and natural frequency give 4i
a better general indication of the transient
behavior than do a@ and . In Fig. 6.4 is b-——
shown a pair of complex conjugate zeros. wy
The distance from the origin to each zero 81
is w, such that w,2 = a2 + b2 The angle /

B which is measured from the negative \

real axis to the radial vector w, is such -8
that ¢ = cos Bor 8 = cos™1{. Thus, the - ey
damping ratio determines the angular
location of the zeros and w, the distance

of the zeros from the origin. Because Fie. 6.4. Complex conjugata
Zeros.

, Real
) > axis

Y'Y B

4= —w, COS B = —{w,

and b = w, 8in 8 = waV/1 — co8? B = w, V1 — {2, the quadratic form

given by Eq. (6.16) may be written as
82 — 2as + (a? + b%) = 8 4+ 2fw.8 + wa? (6.28)

For any given quadratic expression, the numerical values of { and w»
are computed by equating coefficients. For example, consider the expres-
sion 82 4 4s + 9. The constant terms are w.? =9 or w, = 3. The
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reason for using only the positive value when mathematically

wn=\/§=j_‘3

is that o, is the distance from the origin to the zero and must be positive.
The coefficients for the s term give 2¢w, = 4, or { = 4/2w, = 24. If so
desired, the values of a and b are readily computed; that is,

a= —wd = —3(3) = -2

and b = wn VI — 2 =3V1—%=3vV% =5
The time response due to complex conjugate zeros of B(s) [Eqs. (6.24)]
may be written in terms of the damping ratio and natural frequency as

follows:
y®) = 21K (a + )l sin [(wa VT = ) + o
4 Kt 4 + - - 4 K, _se™t —-1<¢<1 (6.29
For the case in which ¢ = 0, Eq. (6.29) becomes

y(®) = 1 1K (@ + 0)| sin (ant + @) + Ko™ + -+ = + Kugeest (6.30)

Thus, a sinusoidal term of constant amplitude (1/b)|K(a + jb)| and
natural frequency of oscillation w, is seen to result.

In Fig. 6.5 is shown a more general plot of a pair of complex conjugate
zeros. When a is negative so that a decreasing exponential results, the
zeros are to the left of the imaginary axis so that 8 < 90° in which case
1> ¢ > 0. For positive values of a, the zeros are to the right of the
imaginary axis so that § >90° and 0 > ¢ > — 1. A positive value of

f=-1_

F1a. 6.5. General plot of complex conjugate zeros.
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¢ yields a decreasing sinusoid, while a negative value results in an increas-
ing sinusoid. For { equal to zero (8 = 90°) a sinusoid of constant ampli-
tude is obtained. When the magnitude of { is greater than 1, two real
. zeros result rather than complex conjugate zeros. The case of real zeros
has previously been discussed.

Logarithmic Decrement. For an exponentially damped sinusoid asshown
in Fig. 6.6, the amplitude of the sinusoid after each oscillation changes in
a geometric series. At time ¢;, the amplitude is (1/ b)|K(a + jb)|e*.
The time required to complete one period is T = 2x/b, and thus the time

\\ —b—
Nt 1K @) e = 1K (@) =Ent

—_—
—_—
t ———

—_

e
—
e —

-

k/
Fi16. 6.6. Logarithmic decrement, .

t, after one oscillation is completed isf; = ¢, + T = & + 2x/b. The new
amplitude is (1/b)|K(a + jb)|e*:+2*/ and the ratio of amplitudes is

1/b)|K (a + 7b)|en o V=
(lﬁb)/ll)(l(a("r‘ jbjile?llxehalb = g7l = gV (6'31)

The log e of this amplitude ratio is —2ra/b = 2x¢/ v/1 — ¢2, which is
called the logarithmic decrement. The amplitude ratio after one oscilla-
tion is thus seen to be a function of the damping ratio only.

Illustrative Example. Let it be desired to determine the general equa-
tion for the transient response of a second-order system to a unit-step-
function change which occurs at ¢ = 0. The operational form of the
differential equation is

wn?
y(@) = 2" F Zwnp F wr? z(t) (6.32)

Assume that all the initial conditions are zero.
soLuTION. The transform for this differential equation is

= wn?X (8) o wy?
Y(s) - 8% + 2;'(,0“8 + w,? - (82 + 2§'w,.s ¥ wn2)8 (6.33)

where X(s) = 1/s is the transform for the step input.
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For complex conjugate zeros (that is, — 1 < ¢ < 1), the response has
the general form

y(®) = ¢ |K(a + jb)|ev sin (bt + o) + K, (6.34)

Evaluation of [K(a + jb)| gives

wn2 2 2

S

| wa %)

—atid la + jb = Va? + bt

Substitution of a = —{w, and b = w, /1 — 2 gives

|K(a + 5b)| =

2
K b)| = = = wp :
|K(a + jb)| Viadteii=r ¢ (6.35)

Similarly, it follows that
a=XK(a+jdb) = %

w,? a —jb

) — =
atjba—36 X (a — jb) = tan '

= tan—! # (6.36)

The constant K, is evaluated as follows:
. wn? _
K= lim F Koms F a1

Thus, the desired transient response is

y(t)=\/1_“;_§2 ~testgin [(wa V1= Dt +al+1 —1<p<1

(6.37)
For the case in which ¢ = 1, the quadratic term in Eq. (6.33) is

82 4 2wn8 + wa? = (8 + wy)?
Thus the partial-fraction expansion for Y (s) is

C, Cy
(8 + "’n)2 s+ wn

The constants C,, Cs, and K, are evaluated as follows:

Y(s) = +

+ Esl (6.38)

C:= lim 2% = —,

——ws 8.
. d [ wa? _ —wa? _
Co= lim [a‘ (—)] =T e =
Ki=lim— " _
L O E F Zons F ot
Thus y(t) = (Czt + Cl)e‘"-‘ + K]

or Yy(&) =1 — (wat + 1)t (6.39)
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In a similar manner, the equation of the time response for { > 1 may be
derived. For this case, the zeros are both negative and distinct so that
‘the response function will include two decaying exponential terms.

In Fig. 6.7 is shown the response y(f) to a step change in the input for
various values of the damping ratio . It is to be noted that, for { < 0.4,
there is an excessive amount of overshooting and oscillations. For
¢ > 1, an excessive amount of time is required to reach the new operating
condition. Thus, for most control work, it is desired to have 0.4 < ¢ < 1.

y (&)

0 2 4 6 8 10 12 wu

Fia. 6.7. Response of second-order system to a step input.

6.5. Predicting the Transient Response from the Zeros of B(s). The
general form of the transient response can be ascertained directly from the
zeros of the transformed function B(s). For example, suppose that the
zeros of B(s) are those plotted in Fig. 6.8. It follows that B(s) may be
factored in the form

B(s) = (s — a1 — jb)(s — a1 + jb1)(s — 7bo)
(s + jb)(s — 0)(s— r2)(s — )2 (6.40)

Performing a partial-fraction expansion on Y (s) = A(s)/B(s) yields.

Kcl K—cl Kc2 + K—c2 + K_l
8—al—jb1 8—(11+jb1 S-jbz 8+jb2 8

K, Ca Cl
+ + (s —n)? ti=s

8§ — T2

Y(s) =

(6.41)

Taking the inverse transform of the preceding expression yields

y(t) = ;—l |K(a1+jb) e sin (byt + ar) + 52 |K(5b2)] sin (bst + as)
+ K; + Kiett + (Cot + Cye* (6.42)




102 + AUTOMATIC CONTROL ENGINEERING

It is to be noted that a pair of complex conjugate zeros yields an
exponentially varying sinusoidal term. A pair of complex conjugate
zeros on the imaginary axis yields a sinusoid with a constant amplitude.
The zero at the origin contributes a constant term. Distinet or multiple
zeros on the real axis yield exponential terms.

The term B(s) = L.(s)Dx(,) consists of the zeros of L,(s) of the char-
acteristic function for the system plus the zeros Dy, corresponding to the
denominator of the transform of the input excitation. If any zero of the
characteristic function for the system L.(s) lies to the right of the imagi-
nary axis, the response contains an increasing time function and will
increase without bound. Thus, if
any zero of L, (s) les itn the right half
Xb, plane (i.e., to the right of the imagi-
nary axis), then the system is basi-
cally unstable. Whether a system
is stable or unstable is a basic prop-
erty of the system L,(s) itself and
not the particular input, or excita-
+ =0 axs  tion, to the system.

The zeros of Dx(, yield response
terms associated with the particular
excitation to the system. Take,
for example, a ramp function
Dx = s? which gives a response
2 term of the form C¢. It should be
Frc. 6.8. Graphical representation of noted that the input which is a
zeros of B(s). ramp function eventually becomes
infinite, and thus the output of the system has been. forced to infinity
because of the particular input. As is illustrated by this example, the
zeros of Dx(, do not affect the basic stability of a system but merely yield
response terms appropriate to the particular excitation.

Illustrative Example. The differential equation of operation for a con-

BT ———X
|
|
|
A
o
K

~
X

oo e —
|
|
|

R

trol system is given by Eq. (6.43)." Determine the general form of the -

response equation when the input excitation z(f) is a unit step function.

360(p2+p+ 1)

P F I T ep+ 0@ Fop 8 H (643

y() =

soLUTION. Because of the unit-step-function input Nx¢y, = 1, Dxy =
8 80 that B(s) = L.(s)Dx¢y = L.(s)s. Thus

Y(e) = 360(s? + s + 1)(1) + sI(s) _ A
¥ = T+ 25+ 5) (s F 65+ 9)(& + 65 + 8)s _ B(s)

.
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The partial-fraction expansion for Y(s) gives

_ Kc K—c 02 Cl : KI
YO =srisetsFi-R G+ Ts¥3TiF2
K, K;
+s+4+7

Thus, the general form of the time solution is

@) = % K (a+b)le—* sin (2t + a) + (Cat + Cp)e™
+ Kle‘” + Kze_“ + K3 (6.44)

It should be noted in all cases that the exponent of each exponential
term is equal to the horizontal distance from the imaginary axis to the zero
of interest. That is, the exponential factor is equal to the numerical value
of the real part of the zero. The terms due to zeros which are located far
to the left of the imaginary axis have large exponential decaying factors
and tend to decrease very rapidly to negligible quantities. Thus, zeros
closer to the imaginary axis usually have a more predominant effect upon
the transient behavior. Accordingly, the analysis of complicated control
systems is often approximated by omitting from the characteristic func-
tion zeros which do not affect substantially the performance of the
gystem.

6.6. Response of System to Change in External Disturbance. In
this section, it is shown that the characteristic function for the differential

d(t)

+
t) + + ¢
ri) G,p) G,(p) ),

H(p) |-

Fi6. 6.9. General representation for a feedback control system.

equation which relates the output of a system to a change in the external
disturbance is the same as that for the differential equation which relates
the output to a change in the desired input. In Fig. 6.9 is shown the
general representation for a feedback control system in which d(f) repre-
sents the external disturbance.

As previously discussed, the effect of the input r(f) and external
disturbance d(f) on the output or controlled variable ¢(f) may be con-
sidered individually and then each result added by superposition to obtain
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the total variation in ¢(f). The block diagram which relates the input
r(f) to the output c(f) without regard to the external disturbance is shown
in Fig. 6.10. The equation relating

re) % Gy(p) G, (p) cl®) r(f) and ¢(f) is obtained as fqllows:
- [r(®) — H(p)eD]IG(p)G=(p) = ¢(?)
(6.45)
H(p) [ Solving for ¢(t) gives
F1c. 6.10. Block diagram for considera~ Gi(p)G
tion of the input #(t). ® =1 G'IggG:g; IO

By using Ng, to designate the numerator of G1(p) and Dg, to designate
the denominator of G1(p), etec., the preceding expression may be written
in the form '

_ No.Nea,/Dg,De,
e(t) = 1+ N¢Ng,Nu/DgDgDn r®
= N GIN G:D H r ( t)
D¢ D¢ Dg + NgNgNu

‘(6.46)

The characteristic function L,(p) for the system is Dg,D¢,Du + Ne,Ne.Nx.

d(t) .
9 + X c(t) d(t) + c(t)
G,(p) G,(p) > G,(p) —>-

Y

-1 =

? H(p) |- ' G,(p)H(p) |

Fie. 6.11. Block diagram for consideration of effect of an external disturbance d(f).

The block diagram which relates the external disturbance d(t) to the
output when r(¢) is considered zero is shown in Fig. 6.11. The equation
relating d(¢) and c(¢) is : " .

[dgt))— G1(p)H (p)c(8)]G2(p) =N c(j) A (6.47)
_ Ga(p N @/ De, '
o O =TT EEGED “Y = TF NoNo.Na/DeDaDa
= NG:DGIDH . (6 4:8)
D¢ D¢, Dy + NeNa,Nu ’
where Gi(p) = %%: Gs(p) = 11\)7:. H(p) = ]I\)r_z

It can be shown that, if an excitation enters any place in the loop, the
differential equation relating the disturbance and the output will always
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have the same characteristic function L,(p) which is the product of all the
denominator terms plus the product of all the numerators. However, the
constant terms which appear in the partial-fraction expansion depend
upon where the disturbance enters the system. Thus, there is but one
characteristic function for a system, and this function gives basic informa-
tion as to the transient behavior of a system.
6.7. System Stability and Transient Behavior Based on Impulse
Response. The response of a system to a unit impulse excitation
" provides a good indication or measure of the general transient behavior of
the system. The unit impulse is in effect a momentary disturbance which

Fia. 6.12. Response of a second-order system to a unit impulse.

upsets the initial state of equilibrium of the system. In time, a stable
system will return again to its equilibrium position.

Substitution of X(s) = 1into Eq. (6.2) yields the transformed equation

for a unit impulse excitation. Lot + 1)

. m(S s

It is to be noted that the basic form of the response of a system to a unit
. impulse is determined entirely by the zeros of the characteristic function
of the original differential equation. If any zeros lie to the right of the
ilaginary axis the output increases without bound so that the system is
basically unstable. For an unstable system, it would be impossible to
achieve any initial equilibrium state, for as soon as the power was turned
on, the output would continually increase with time. As mentioned in .
the preceding section, the characteristic function is an inherent property
of the system, and thus the basic form of the response to an input is
independent of where the excitation enters the loop.

In Fig. 6.12 is shown the response to a unit impulse of a second-order
system whose operational equation is

(@* + 2wnp + ea?)y()) = wa’z() (6.50)
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It is to be seen from Fig. 6.12 that for { < 0.4 there is a considerable
amount of oscillation before the system again reaches equilibrium opera-
tion. Also, for ¢ > 1.0 a considerable amount of time is required for the
system to return to its initial state. Thus, it seems desirable to have
0.4 < ¢ < 1.0. Thisis the result that was obtained from a consideration
of the step-function response.

6.8. Stability Criteria. A major difficulty in using the Laplace trans-
form method for determining the transient response of a feedback control
system is that it necessitates determining the zeros of the characteristic
function. The general form for the characteristic function has previously

been shown to be
DGlDGxDH + NGxNGzNH (651)

In determining the block diagram for a system, the terms Ng,, Ng,, Ng,
Dg,, Dg,, and Dy are usually obtained in factored form. Because of the
plus sign in Eq. (6.51), the zeros of Ng,, N, etc., are not the zeros of this
characteristic function. Thus, it becomes necessary to determine the
zeros of the general polynomial represented by Eq. (6.51). This presents
no difficulty for first- and second-order systems. The zero of a first-order
system is immediately obvious, and the two zeros of a quadratic equation
are readily solved. However, a third-order system requires determining
the three zeros of a cubic, and a fourth-order system necessitates solving
a quartic, etc.

-Routh’s Criterion.! Routh’s criterion is a method for determining
whether or not any of the zeros of the characteristic function are in the
right half plane. The application of this criterion is as follows:

First write the characteristic function in the general form

bn.s™ + bpis™ ' 4+ bo_os®™t+ - - - + ba2s® + bis + by (6.52)

Next arrange the coefficients of the characteristic function according to the
following schedule

bn bn—2 bn—4 bn—s

bn—l bn—3 bn—s bn_7
(3] Ce C3 Cy

d do ds .

.............. . o (6.53)
e e 0

N fa 0

N 0

hy 0

1 E, J. Routh, “Dynamics of a System of Rigid Bodies,” 3d ed., The Macmillan
Company, New York, 1877.
. . i -

St [
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After first arranging the b coefficients as shown, the row of ¢ terms is
evaluated as follows:
bn-—lbn—z - bnbn—a

C1 =

bn—l
C2 ='bn—lbn—l: —1 b”b”_s (6'54)
C3 = bn—lbn—bﬁ —1 b"'b”_7

The arrows in. Eq. (6.53) show the schedule of cross multiplication that is
used to evaluate ¢;. This same general schedule is used for each suc-
cessive term. By dropping down a row, the same schedule is used for
evaluating each d term. That is,

¢1bn_3 — ba_s1C2
C1

cibn—s — ba_1Cs
€1

d

(6.55)
d2 =

This process is continued until only zeros would result in all successive
rows. To illustrate, consider the function

st + 383 4- 52+ 6s + 2 (6.56)

The first two rows of the following array are obtained directly from
the coefficients of Eq. (6.56), and the remaining rows are computed as
just described:

1

3
-1
12
2

0

oo W

(6.57)

SO =

Routh’s criterion states that the number of changes of sign of the
coefficients in the left-hand column is equal to the number of zeros of
the characteristic function that are located to the right of the imaginary
axis.

For the preceding example, the signs of the numbers in the left-hand
column are seen to go from plus to minus and then back to plus again so
that there are two changes of sign. Thus, there are two zeros located
to the right of the imaginary axis.

It is not necessary to use Routh’s criterion if any of the coefficients of
the characteristic function are zero or negative, because when this is so,
it can be shown that there is at least one zero loeated on, or to the right of,
the imaginary axis.
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To determine how many zeros of the characteristic function lie to the
right of some vertical line, a distance o from the imaginary axis (i.e.,
the number of zeros that have a real part greater than ¢), transform the
characteristic function by substituting s 4 ¢ for s, and apply Routh’s
criterion as just described. The number of changes of sign in the first
column for this new function is equal to the number of zeros which are
located to the right of the vertical line through o.

If a 0 appears in the left-hand column and the sign of the term above
the 0 is opposite of that below the 0, then there is but one sign change.
However, when the sign of the term above the 0 is the same as that
below it, a pair of zeros on the imaginary axis is indicated. For example,
consider the function

8+ 352 + 4s + 12 = (s + 3)(s? + 4) (6.58)
The array of coefficients is
1 4 0
3 12 0
0 0 (6.59)
0-0
0 .

To evaluate the fourth coefficient in the left-hand column, replace the
0 obtained for the third coefficient by ¢, which is a very small number.
Thus

1 4 0
3 12 0

=0 o (6.60)
12 0

The value of the fourth coefficient is (12¢ — 0)/e = 12. The factored
form of Eq. (6.58) shows'the imaginary zeros indicated by the preceding
array. The number of coefficients in the left-hand column is n + 1,
where n is the order of the characteristic function. For the case in
which a zero of the characteristic function is located at the origin, then
the coeflicient of the (n 4 1)st row is 0.

Hurwitz Criterion.® This criterion determines the conditions which
must be satisfied by the coefficients of the characteristic function so that
the system is stable (i.e., all the zeros lie in the left half plane). In the
Hurwitz criterion, the coefficients of the characteristic function [Eq.
(6.52)] are arranged in the following array: :

1E. A. Guillemin, “The Mathematics of Circuit Analysis,” pp. 395-409, John
Wiley & Sons, Inc., New York, 1949.



D, b bo 0 0 0
D; b; bs b, by O

D; b bs bs | b2 b (6.61)
D4 b1 bg bs b4 b3
whence the determinants Dl, D, Ds, . . . are found to be
_ _ b1 be
Dy =b, D, = by by
by b O (6.62)
Da = ba bz b1
bs by b

For stability, it is necessary that all the determinants be positive. That
iS, D, > O, D, > 0, D; > 0, ete.
For a general cubic expression

b383 + sz2 + bls + bo (6.63)
the application of the Hurwitz criterion gives
D1 = bl > 0
b be (6.64)

Dz= b3 bz, =b1b2—bob3>0

D3=b3D2>OOI‘b3>0
Thus for stability
bib2 > bobs (6.65)

With the Hurwitz criterion, similar conditions necessary for the stability
of higher-order systems may also be derived. The preceding techniques
of Routh and Hurwitz can be extended to yield information regarding the
location of the zeros as the coefficients are varied.'—4

6.9. Summary. In this chapter it is shown that the transient re-
sponse of a system is governed primarily by the location of the zeros of
B(s) = La(s)Dxw). The zeros of Dx(, yield response terms appropriate
to the particular excitation to the system. The function L,(s) is a basic
property of the system itself. When all the zeros of L,(s) are located in

1 E. Sponder, On the Representation of the Stability Region in Oscillation Problems
with the Aid of Hurwitz Determinants, NACA Tech. Mem. 1348, August, 1952.

2 J. F. Koenig, On the Zeros of Polynomials and the Degree of Stability of Linear
Systems, J. Appl. Phys., vol. 24, p. 476, 1953.

3T, J. Higging and J. G. Levinthal, Stability Limits for Third Order Servomech-
anisms, Trans. AIEE, vol. 71, pt. 2, p. 459, 1952.

¢H. A. Hogan, and T. J. Higgins, Stability Boundaries for Fifth Order Servo-
mechanisms, Proc, Ngtl. Electronics Conf., vol. 11, pp. 1001-1011, 1955,
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the left half plane, the system is stable (i.e., for any bounded input the
response is also bounded). If any zero of L.(s) is located in the right
half plane, the system is unstable (i.e., the response is always unbounded).
The imaginary axis is the border line between stable and unstable systems.

Complex imaginary zeros are undesirable because they yield constant
sinusoids. A zero of L,(s) at the origin is also undesirable because it
indicates an integration of the input. Note that an integrator in the
feedforward elements (which integrates the error signal) does not yield
a zero of L,(s) at the origin because the zeros of Dg(,) are not the zeros
of L.(s). When the characteristic function L,(s) has a zero at the origin,
a constant input (i.e., a step function) yields an unbounded time term
C,t in the output which is the integral of the input. The output is
bounded only if the integral of the input is bounded.

The basic form of the response due to repeated zeros is the same as
that for distinct zeros, with the exception that repeated zeros on the
imaginary axis yield increasing time terms rather than time terms with
constant amplitudes. Because B(s) = L.(s)Dx¢), the zeros of L.(8)
and Dx act independently to yield the time response unless one or
more of the zeros of La.(s) and Dx¢) are the same. This introduces
repeated zeros in B(s), which affects the basic form of the response equa-
tion only if the zeros are on the imaginary axis. For example, a repeated
complex imaginary zero results in an increasing sinusoid rather than a
constant sinusoid. Similarly, a repeated zero at the origin yields an
increasing time function rather than a constant. As previously discussed
in this section, a step input Dxw = s) applied to a system in which
La(s) has a zero at the origin introduces an s? term in B(s) that yields an
increasing time function Cit in the response. To ensure stability, zeros
of L.(s) should be excluded not only from the right half plane but also
from the imaginary axis.

Table 6.1 summarizes the type of response terms associated with the
zeros of B(s).

TasLe 6.1. LOCATION OF ZEROS AND CORRESPONDING REsPONSE FUNCTIONS

Zeros of B(s) = La(s)Dx( Type of response
Left half plane (distinct or repeated). . Decaying exponential and/or decaying
sinusoid
Right half plane (distinet or repeated) Increasing exponential and /or increasing
sinusoid
Imaginary axis:
DIiStinet...ovvveveeenonanascansee Constant and/or constant sinusoid
Repeated....coovveervnernannenes Tnereasing time function and/or increas-

ing sinusoid




CHAPTER 7

THE ROOT-LOCUS METHOD

7.1. Significance of Root Loci. The root-locus method was developed
by W. R. Evans.!~* This method enables one to determine the roots of
the characteristic equation (i.e., the zeros of the characteristic function)
by knowing the factored form of the feedforward and feedback elements
of a control system.

As is discussed in Chap. 6, the transient behavior of a system is
governed primarily by the roots of the characteristic equation for the
system. Neither the initial conditions nor the particular excitation
affects the basic operation of a system.

To illustrate the significance of the root loci, consider the control
system represented by Fig. 7.1a. The general form for the characteristic
equation is

DgDg 4+ NgNgyg =0 (7.1)
From Fig. 7.1a it follows that N¢ = K, D¢ = s(s +4), Ny = 1, and
Dg = 1. Thus, the characteristic function for this system is

ss+4)+K=s2+4s+ K (7.2)

The roots of the characteristic equation depend upon the value of K,
which is the static loop sensitivity. As is shown in Fig. 7.1a, the static
loop sensitivity K is the product of all the constant terms in the control
loop when the coefficient of each s term is unity.

Because Eq. (7.2) is a quadratic, the roots are 71,2 = a + jb, in which
~2a=4ora= —2andb=+VK —a? =K — 4. Thus

ForK >4 rye= —2-|_-j\/K—4
For K =4 ry =7 = -2 (7.3)

ForK<4 rs=-2+jvVK—4=-2F+vV4—K

!'W. R. Evans, Graphical Analysis of Control Systems, Trans. AIEE vol. 67,
pp. 547-551, 1948.

*W. R. Evans, “Control-system Dynamics,” McGraw-Hill Book Company, Inc.,
New York, 1954.

3J. J. D’azzo, and C. H. Houpis, “Control System Analysis and Synthesis,”
McGraw-Hlll Book Company, Inc., New York, 1960.

1C. J. Sava.nt Jr., “Basic Feedback Control System Design,” MecGraw-Hill Book
Company, Inc., New York, 1958.
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In this last case, the roots are real and unequal. The heavy lines in
Fig. 7.1b are a plot of the roots of this characteristic equation for various
values of K. When K = 0, the roots are r,; = 0, —4; when K = 4, the
roots are r, = rs = —2; when K = 16, therootsarer,s = —2 £ iv12;
ete.

Such a plot of the roots of the characteristic equation for each value
of K as K varies from 0 to « is a root-locus plot. From such a root-locus

A A
R(s) + K Cis) 4+
_*?- s(s+4) o -
: - K=-164 -
\\ 3t
W (a) . K-54 \\ ,L
Ce = S+4 . N \
S SErqxr X ]
=) €+ so"/\\l"
. . K=0  K-4 L , l\xK—o: 5 Real
-5 -4 -3 -1 o0 1 2 s
-1+
Y
K=8¢ -7
-3+
K=16%
- —4--
(b) Y

F16. 7.1. (a) Second-order system; (b) root-locus plot fors(s +4) + K =0.

plot, it is an easy matter to select the value of K to yield the desired roots
of the characteristic equation. For example, let it be desired to have
a damping ratio ¢ = 0.5. As discussed in the preceding chaptes,
B =cos !¢t = cos~10.5 = 60°. As is shown in Fig. 7.1b, the line
inclined at the angle 8 = 60° intersects the root-locus plot at a value of
K = 16. From this plot, the corresponding roots are

L= —2% .7 \/T2-
in which case the factored form of the characteristic function is

(s—r)s—r) =(+2—2V3)(+2+2V3)
=s2+4s+ 16 (7.4)
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From the preceding expression, it follows that w.? = 16 or w, = 4, and
equating 2{w, to the coefficient 4 of the s term gives § = 4/2w, = 14,
which verifies the preceding results.

A plot of the roots of the characteristic equation as K varies from 0 to «
yields very valuable information. For example, consider the feedback
control system shown in Fig. 7.2a. It is to be noted that

Ne¢=K Dg = s(s + 4)(s + 6) Np=1 D=1 (7.5)

Thus the characteristic function is

88+ 4)(s+6)+ K =(s—r)(s—r)(s —rs) (7.6)
The right-hand side of Eq. (7.6) is the factored form of the character-
istic function. Because the number of roots i, 3, . . . , r, is equal to

the order of the equation, the number of loci is also equal to the order
of the equation, which in this case is 3. For each value of K, there corre-
sponds a particular value of ry, r9, and ;. Thus, for each value of K
from 0 to « one may plot the loci of corresponding values of ry, rs,
and r3. The three loci for Eq. (7.6) are drawn in Fig. 7.2b. One locus

starts at r1 = —6 for K = 0 and proceeds out the negative real axis as
K increases. Another locus starts at r, = —4 and goes to the right
along the real axis to the point r; = —1.57 and then leaves the real

axis and proceeds out along a 60° asymptote toward infinity. The
third locus starts at rs = 0 and moves along the negative real axis to
rg = —1.57, This locus then leaves the real axis and proceeds toward
infinity along a —60° asymptote. In the construction of the loci, the
three loci are determined without regard to which is considered the
71, the r;, or the r; locus. That is, from the similarity of the terms on
the right-hand side of Eq. (7.6), it is seen that the particular subscripts
1, 2, and 3 may be used interchangeably.

From Fig. 7.2b it is to be noted that, if K is 240, then the three roots
of the characteristic equation are

r=—10 .ro=j49 1= —j49

Thus, the characteristic function may be written in the following factored
form:

s(s+ 4)(s + 9 + 240 = (s + 10)(s + 74.9)(s — 74.9) (7.7)

For K = 240, a pair of roots lie on the imaginary axis which would
yield a sinusoidal response term of constant amplitude. From the
root-locus plot, it is to be noted that, for K > 240, a pair of roots will
always lie in the right half plane, thus making the system unstable.

- For each value of K the corresponding roots of the characteristic equa-
tion may be determined directly from the root-locus plot. These roots
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in turn govern the transient behavior. From the root-locus plot, the
designer may select the value of K such that the system will have a
desired transient behavior. For example, let it be desired to have a
damping ratio of 0.5. The intersection of the line drawn at the angle
8 = 60° with the loci determines the value of K = 44. It is to be
noted that the loci are always symmetrical with respect to the real axis
because complex roots always occur as conjugate pairs.

R(s) + K C(
? ? s(s+4) (s+6)

| B2

(a)
K=17
. K=240 K=44\K=0 K=0
-12 -1 -8 -6 Za

1-4

() —6-\
Yo

Fic. 7.2. (a) Third-order system; (b) root-locus plot for s(s + 4)(s + 6) + K =0.

7.2. Construction of Loci. By determining certain points and asymp-
totes, the loci may be sketched in quite readily. The loci always origi-
nate, or begin, at K = 0, in which case the value of the roots is obtained
directly from the characteristic equation. For example, from Eq. (7.6)
‘when K = 0, the roots are 0, —4, and —6.

The zeros ry, rs, . . . , 7= of a characteristic function are those values
of s which make the characteristic function equal to zero, i.e.,

ss+4)s+6)+K=(—r)s—r)s—r)=0  (78)

Thus, a root ry, 72, . . . , 72 of a characteristic equation is a value of s
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such that
8(s+4)(s+6)+K=0
or s(s+ 4)(s+6) = —K (7.9)

. InFig. 7.3, it is to be noted that the term s in Eq. (7.9) may be repre-
sented as a vector drawn from the origin to any point s = a + b in
the s plane. Similarly, the term s 4 4 is the vector sum of the vector
drawn from the —4 point to the origin plus the vector from the origin
to the point s. This vector sum is equal to the vector drawn directly
from the —4 point to s. Similarly, s + 6 is the vector drawn from —6

s=a+jb

4 'Regl
-10 -8 -6 -4 -2 2 axis

F16. 7.3. Application of the angle condition to a trial point.

tos. Thus, Eq. (7.9) may be regarded as a vector equation. The length
or magnitude of each vector satisfies the magnitude condition

lsl Is + 4l s + 6] = |~K| = K (7.10)

where |s| is the length of the s vector in Fig. 7.3, |s + 4| is the length of
the s 4 4 vector, ete. In addition, the angle of each vector must satisfy
the angle condition

Xs+ X(s+4)+ %X(s+6) = X (— K) = 180° + k360° (7.11)
where £=0,1,2,38, ...

X8 = ¢
X(s+4) = ¢
X (s46) = ¢s

The angles ¢1, ¢z, and ¢, are illustrated in Fig. 7.3.

The term — K is a negative number which may be represented as being
at the point —K on the negative real axis so that X (— K) is 180° +
£360°.

In order that a point in the s plane be a root of the characteristic
equation and thus lie on a locus of the roots, it is necessary that the
point be located so that Eq. (7.11) is satisfied. Thus, the paths of the
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loci are determined from Eq. (7.11). After the root-locus plot has been
obtained by application of Eq. (7.11), then the value of K at any point
on a locus may be computed by means of Eq. (7.10).

The first place to start investigating the location of loci is along the
real axis. For a trial point s on the positive real axis,

Xs= X%(s+4) = X(s+6)=0° (7.12)

Thus, ¢1 + ¢: + ¢3 = 0° in which case the angle condition is not satis-
fied. Therefore, there is no locus on the positive real axis.
Next, consider a trial point s that lies on the real axis between 0 and
—4; then ,
X s = 180° X(s+4) =0° %X(s+6) =0° (7.13)

Because ¢1 + ¢2 + ¢s = 180° satisfies the angle condition, there is a
locus on the real axis between 0 and —4.
For the region from —4 to —6, it follows that

Xs=180° X (s+4) =180° X(s+6) =0 (7.14)

Thus, ¢ + ¢2 + ¢: = 360° does not satisfy the angle condition. Finally
for the region from —6 to — « on the negative real axis,

é1+ 2 + ¢3 = 180° + 180° + 180° = 540°

so that Eq. (7.11) is again satisfied, which signifies a locus in this region.

The next step in the construction of the loci is to determine the asymp-
totes as s approaches infinity. For very large values of s, the terms 0, 4,
6 in Eq. (7.9) become negligible compared with the value of s, so that
Eq. (7.9) becomes

8(s + 4)(s + 6) = s(s)(s) = 8 = —K (7.15)

The angle condition is
3Xs

X s?
o x5 = 180

180° + k360°
k360° _ 600 + K120°

(7.16)

ewo|H

Only three distinct angles, 60°, —60°, 180°, are obtained from Eq.
(7.16).

In order to locate the asymptotes, it is necessary to know where they
intersect the real axis. The point ¢, where the asymptotes cross the
real axis is determined from the general equation.

_ S zeros of DgDy — 2 zeros of NeNgu 7.17)
- 7° = (mo. of zeros of DgDx) — (no. of zeros of N¢Nz) :
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For this system, Eq. (7.17) becomes

| L O+ (= + (=0 -0_ 10
¢ 3—-0 "3

) The information thus far obtained concerning the location of the roots

is shown graphically in Fig. 7.4. By knowing the point at which the

loeus between 0 and —4 breaks away from the real axis, one can con-

struct a reasonably good sketch of the locus. This breakaway point o}

[y

= —-33 (7.18)

=)

. Real
2 axis

2z,
Lo

-10 -8 -6

F1G. 7.4. Location of loci on real axis, and the asymptotes.

is determined as follows: Consider in Fig. 7.5 a point s which is a small
vertical distance A above the real axis. The equation for each angle is

¢ = x — tan™?!

0—op
A
o — (—4)
s
o — (—6)
For small values of A, tan—! (A/~03) = —A/os, ete. From Fig. 7.5, it
is to be seen that, as A approaches zero, ¢; + ¢2 + ¢s =7 + 0+ 0 = =.
Thus

(7.19)

tan—!

b2

¢3 = tan™—!

A A

: A
¢1+¢z+¢t=f+:b+4+ﬂ+.6+,b='
A A A
or ataFitare™

0 (7.20)
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After eliminating A and obtaining a common denominator, the preceding
expression becomes

3052 + 200, + 24 =0
whence gy = —1.57 (7.21)

The value of K at the point where the locus breaks away from the real
axis is the maximum value that K attains between the points 0 and —4.
Thus, an alternative method for determining o, is first to solve the char-
acteristic equation for K:

K= —s(s+4)(s+ 6) = — (s34 1052 4 24s) (7.22)
Differentiation to obtain the value of s = o3 at which K is a maximum
gives
dK d
= o @+ 105"+ 245) = — (32 + 205 +24) =0 (7.23)

Equation (7.23) is the result that was obtained by the preceding geometric
evaluation. When dK/ds is a cubie or higher, the point s = o; at which

AJ

b5 e
A ¢
: \ : » Real
Za 1 _2 2 axis
l—0,- (=) —-0-,~

7,~(—6) ———~

F16. 7.5. Determination of the breakaway point.

K is a maximum may be obtained by plotting K as a function of s. The
occurrence of a breakaway point is ascertained by the fact that there is
always a breakaway point between any two adjacent x’s on the real axis which
are connected by a locus. An x is used to designate a zero of DgDuy.
With the information obtained thus far, the root-locus plot may be
sketched in quite accurately, as is shown in Fig. 7.6. For better accuracy
in constructing the path of the loci from the breakaway point to the
asymptote, it is necessary by trial and error to select trial points in this
region and apply the angle condition. Trial points which satisfy the
angle condition are points on the locus. It is a good idea to start by
choosing all trial points on the same vertical line until the point on the
loci is obtained. For a trial point on one side of the loci, the angle
condition will yield an angle greater than 180° and for a trial point on
the other side, an angle less than 180° is indicated. This information
indicates in what direction a new trial point should be taken. The
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use of a spirule, which is a commercially available device, saves much
effort in finding the angle of a trial point.

The basis for determining the value of the gain K at various places
. along the loci is the magnitude condition, that is, Eq. (7.10).

Referring to Fig. 7.6, it is to be noted that the product of the length
of each vector [s + 6|, |s + 4|, and |s| yields directly the value of K at
any point on the loci. To illustrate the application of the magnitude

-10 -8

A\

Fi1a. 7.6. Application of magnitude condition.

condition, consider the point shown on the locus in Fig. 7.6. The value
of s at this point is

s = —12+4j2.1
From Eq. (7.10), it follows that

K = |s| s+ 4| |s + 6
=4/—122 + 2712 V282 +2.12 V482 4+ 212 = 44

In summary, then, the path of the locus plots is obtained entirely
from the angle condition [Eq. (7.11)), and the values of K along the loci
are determined from the magnitude condition [Eq. (7.10)].

The value of K at which the locus crosses the imaginary axis may be
computed by Routh’s method if so desired. That is, application of
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;-
T4
T3
T2
1
> Real
0 axis
+-1
-2
R(s) + K,
(s41)(s2+65+13) 4 -3
K=10
-4
Ky(s+4)
(a) . (b)

Fia. 7.7. (a) Feedback control system; (b) root-locus plot for
(8+1)(s2+6s+13) +K(s+4) =0 -

Routh’s criterion to the characteristic function s% 4 10s? 4 24s + K
gives the following array:

1 24 0
10 K 0
240 — K
—qo  — ¢ 0
Ke _

€

The value of K which makes the third coefficient vanish is K = 240.

Complex Conjugate Terms. The application of the root-locus method
is now illustrated for the system shown in Fig. 7.7a, in which it is noticed
that D¢ has complex conjugate zeros. The characteristic equation for
this system is

B+ D2 +6s+13)+ K(s+4)=(—r)(8—r)(s—1r:) =0
) (7.24)
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where K = K;K,. Because the highest power of s in the characteristic
equation is 3, there are three loci. Factoring the quadratic term in
Eq. (7.24) gives

E+DE+34+52)(s+3—-42)+K(s+4) =0
+D6E+3+52)(6+3—42)
s+ 4

or K (7.25)
The angle condition is

2@+ + X(s+3+72)+ %(+3—372) — X(s+ 4)
= 180° + k360° (7.26)

In general, the angle condition is written
4 DeDp — X NgNg = 180° + k360° (7.27)

To begin to construet a locus, first plot the zeros of DgDy and the zeros
of N¢Ng. As shown in Fig. 7.8, the vector drawn from each zero to

AJ
2l - -
l..
Real
0 axis
(8+3+,2)
-14
)
-2-1.

- F16. 7.8. Application of angle condition to a trial point.

any point s represents the corresponding term in the characteristic
equation. The location of the zeros of DgDy is indicated by crosses
(), and the zeros of N¢Ng are always represented by small circles (O).
In order that-a trial point s be a root of the characteristic equation
(ie., bea point on a locus of the roots), from the angle condition it follows

that
¢1+ ¢2 + ¢ — ¢4 = 180° £ k360° (7.28)
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where 1= %(s+1)
o= %(s+ 3+ j2)
¢z = %.(s+ 3 —3j2)
¢ = X(s+4)

As usual, the first place to investigate the possible location of loci is
along the real axis. As is illustrated in Fig. 7.9, the value of ¢: + ¢;
will always be 360° when s is on the real axis. For any trial point s on
the real axis, the sum of the angular contribution ¢: + ¢3 for any com-
plex conjugate x’s (zeros of DgDy) or O’s (zeros of NeNp) will always

£ L

0 axis

_r_z
Fia. 7.9. Location of loci on the real axis.

be 360°. 'Thus, the location of the loci along the real axis is determined only
by the x’s and O’s which lie on the real azis. When s is to the right of the
—1 point, ¢1 = ¢s = 0°. Thus, there is no locus located to the right
of the —1 point. When s is between —1 and —4,

é1 — ¢4 = 180° — 0° = 180°

so that a locus is located in this region. Similarly, it can be established
that there is no locus to the left of the —4 point.

The next step in the construction of the loci is to determine the asymp-
totes for very large values of s. In Eq. (7.26), the terms 1, 3 + 72,
3 — 72, and 4 become negligible compared with the value of s, so that
Eq. (7.26) becomes

X8+ %8s+ Xs— X8 =180° + k360° k=01,2 ... (729
or 3Xs — X8 =2%s = 180° + k360°

(=] -]
g = BE R0 900 4 k180" = 1 90° (7.30)

In general, it can be shown that the angle of the asymptotes is given
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by the following equation,
s = 180° & 360

n-—m
where n = highest power of s in DgDy = no. of x’s
m = highest power of s in N¢gNg = no. of Q’s
The number of distinet asymptotes is equal to n — m. Although it
would appear from Eq. (7.31) that there are more asymptotes, the angles

\

k=012, ... (7.31)

Real
0 axis

X {-—2
Fig. 7.10. Determination of the angle of departure.

repeat for other values of & after » — m distinct angles have been
determined.

The intersection of these asymptotes with the real axis is found as
follows by application of Eq. (7.17), which is the general expression for
" obtaining the point of crossing o.: '

The information thus far obtained is sketched in Fig. 7.10. The
next step is to determine the angle of departure of the loci from the
complex conjugate zeros of DgDy. To do this, a trial point s is taken
which is located very close to the point (—3 — j2). From Fig. 7.10, the
following values for ¢, ¢3;, and ¢4 are obtained: :

ac=[

_ a4 (=2)-0 =2 o

¢1 = tan ’_——(_3) =1 " tan—! —5 = 225

¢z = tan“(_(T—)z)_—_(_% = tan—! :Oé = 270° (7.33)
— - (_2) -0 _ - :g - o

¢4 = tan™! =3 = (=9 tan—! T = 296.5
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The angle ¢, of departure of the loci from the point (—3 — j2) is deter-
mined from the angle condition as follows:

1 + ¢z + ¢3 — ¢ = 225° + @2 + 270° — 296. 5° = 180° + k360°
(7.34)

Thus ¢: + 198.5° = 180° + k360°

or : ¢s = —18.5° + k360° = —18.5° (7.35)

Because the loci are symmetrical about the real axis, the angle of depar-
ture from the other conjugate zero will be +18.5°. The complete
root-locus plot may now be sketched in as shown in Fig. 7.7b. The
value of K at any place along the loci is determined by application of
the magnitude condition.

From Eq. (7.25), it is to be noted that for s = —1, —3 — 72, or

—3 + 72, the value of K is 0. These values of s are the zeros of DgDy.

Thus, in general, one locus begins at each zero of DgDy (that is, each x).

Similarly, for s = —4, K = . The value s = —4 is a zero of NgNg,

and thus one locus will terminate at each zero of N¢Ny (that is, each O).

If » is the number of x’s and m the number of O’s, then the remaining
r—"n — m loci terminate along asymptotes at infinity.

7.3. General Procedure for Determining Root Loci. In the preceding
section, it was shown that the loci could be sketched in quite accurately
by knowing a few critical points, asymptotes, and the angle of departure
from complex zeros, etc. The general procedure for constructing root
loci is summarized as follows.

1. Origin. When K is zero, the zeros of the characteristic function are
the zeros of DgDgr. Thus, each locus originates at a zero of DDy (desig-
nated by x's) and the number of individual loci 18 equal to n, the number of
zeros of DgDpg.

2. Terminus. As K becomes very large, m loci (m is the number of
zeros of NgNy) will approach the m zeros of NeNa. That is, one locus
will terminale at each of the m zeros of NgNy. The remaining n — m loct
will approach infinity along asymplotes.

3. Asymptotes. The angles at which each of the n — m loci approaches
infinity is determined from Eq. (7.31); i.e.,

o o ’
_ 180° + k360 (7.31)
n—m
The point o, at which the asymptotes intersect or cross the real axis is
computed by Eq. (7.17); i.e.,
= (zeros of DgDy) — = (zeros of N¢Ng)

0. = — } - (117)
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- 4. Loct on Real Azis. Complex zeros of DgDy or NgNx have no
effect on the location of loci on_the real axis. The place at which the
loci are located along the real axis is determined by considering only
zeros of DgDy and NgN g which lie on the real axis. As is illustrated in
Fig. 7.11, there is never a locus to the right of the first O or x on the real
axis, but there is always a locus to the left of the first O or x, there is
never a locus to the left of the second O or x, there is always a locus to
the left of the third O or x, never left of fourth, always left of fifth, and so
on, alternating,.

5. Breakaway from Real Azis. 'The point oy at which the locus breaks
away from the real axis is obtained by applying the angle condition to

J

N o o < Real
: axis
(a)

I/
- 3¢ O Omeet> PR . Real
S | axis
(b)

F1G. 7.11. Loci on real axis.

an arbitrarily chosen point which is a small vertical distance A from the
real axis and then solving this resultant equation for the only unknown
term o;. This may also be determined by finding the real value s = o,
at which K is a maximum (that is, dK/ds = 0).

6. Angle of Departure. The angle of departure of a locus from a
complex zero of DgDy is obtained by selecting a tnal point very close
to this zero and applying the angle condition.

7. Angle of Arrival. The angle at which a locus will terminate at a
complex zero of N¢Ny is determined by taking a trial point which is
close to this zero and applying the angle condition. This process is
similar to that used to obtain the angle of departure from a zero of
DgDH.

The following technique for evaluating a break-in point completes the -
preceding list of rules for constructing root-locus plots. A break-in point
is similar to a breakaway point with the exception that a pair of loci
comes into the real axis rather than leaving it. A break-in point is
illustrated in Fig. 7.12. This is the system shown in Fig. 7.1, with the
addition of the s + 6 term in Ng. The characteristic equation for the
system of Fig. 7.12 is '

s(s+4)
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Application of rule 4 to determine the loci on the real axis yields the
location of loci along the real axis as shown in Fig. 7.12.
The breakaway and break-in points are evaluated as follows:

dK _ _dss+4) _ _[Gc+6)@+4) —sc+49]_

ds - ds s + 6 - [ (S + 6)2 =0 (7.37)
Thus, s2+ 125 +24 =0 |
whence §=—6+2+/3=—254, —9.46 (7.38)

Further investigation shows that the value —2.54 makes K a maximum
in the region —4 < s < 0; thus this is the breakaway point. The value

R(s) +~ K(s+6) C(s)
s(s+4) T

sk K=0 | Real

F1e. 7.12. Root-locus plot for s(s + 4) + K(s + 6) = 0.

—9.46 makes K a minimum in the range —® < s < —6; thus this is
a break-in point as illustrated in Fig. 7.12. These breakaway and
break-in points could also be computed by the geometrical technique pre-
viously discussed of assuming a trial point s which is a small distance
A above the real axis.

The occurrence of a breakaway or break-in point can be recognized
from a consideration of the x’s and O’s which lie on the real axis. Every
locus begins at an x and terminates at a O or along an asymptote at
. Thus, there must be a breakaway point between any two adjacent x’s
on the real azis which are connected by a locus. Similarly, a break-in point
is required if a O on the real axis is not connecled to an adjacent x on
the real azis by a locus. Thus, if the locus is not located entirely on the
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K=0

Fig. 7.13. Root-locus plots.

real axis between an adjacent O and x, it is necessary that it come into
the real axis from elsewhere. The preceding rules may be verified for the
root-locus plots shown in Fig. 7.13.

A comparison of the root-locus plot given in Fig. 7.12 with that of
Fig. 7.1 shows that a zero of N¢Ny (that is, a O) has the effect of pulling
the locus to the left. For large values of K the system of Fig. 7.1 would
have a small damping ratio and would thus exhibit a very oscillatory
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type of response. For the system of Fig. 7.12, large values of K would
result in negative real roots and thus a damped exponential type of
response. In general, the addition of a O in the left half plane tends
to make the system more stable. On the other hand, adding an x in the
left half plane tends to push the root-locus plot to the right and thus
decrease stability.




CHAPTER 8§

ANALOG COMPUTERS

8.1. Introduction. The use of computers has played a major role in
the recent advances in the design of automatic control systems. These
computers may be divided into two types, analog .computers™? and
digital computers.+5

An analog computer is one in which the equation describing the opera-
tion of the computer is analogous to that for the actual system. The
most commonly used analog computer is the electronic analog computer,
in which voltages at various places within the computer are proportional
to the variable terms in the actual system. As is shown in this chapter,
the operation of a control system can be simulated by the use of an
analog computer.

Basically a digital computer can only add and subtract. Thus it is
necessary to reduce all problems to rather elementary mathematical
manipulations. This process is called programming. The programming
of a problem for solution on a digital computer makes extensive use of
the methods of “numerical analysis” to convert the problem to the
numerical operations which the computer can perform. It may require
. weeks or even months to program a problem for a computer, which in turn
completes the solution in a few minutes or seconds. A digital computer
has been referred to as an “energetic moron” in that it is capable of per-
forming thousands of simple additions and subtractions in a second. A
digital computer must store information for use in later computations.
This is usually done by means of a magnetic drum, which acts as a mem-
ory device.

! G. A. Korn and T. M. Korn, “Electronic Anslog Computers,” 2d ed., McGraw-
Hill Book Company, Inc., New York, 1956,

*A. 8. Jackson, “Analog Computation,” MecGraw-Hill Book Company, Ine.,
New York, 1960.

! G. W. Smith and R. C. Wood, “Principles of Analog Computation,” McGraw-Hill
Book Company, Inc., 1959.

“N. R. Scott, “Analog and Digital Computer Technology,” McGraw-Hill Book
Company, Inc., 1960.

*R. 8. Ledley, “Digital Computer and Control Engineering,” McGraw-Hill Book
Company, Inc., 1960.

129
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The input to a digital computer consists of numbers and instructions
for the operation of the machine on these numbers. These numbers and
instructions may be fed into the machine by various methods such as
punched cards, tape, typewriter, ete.

Because of the ability of both digital and analog computers to solve
complicated mathematical equations almost instantaneously, they are
often incorporated as part of control systems to compute desired informa-
tion. This information may then be used immediately to improve the
control of the particular system. For example, in an inertial guidance
system, the output of three mutually perpendicular accelerometers is
fed into a computer, which in turn calculates the position of the vehicle.
Thus, the output of this computer is the actual position of the vehicle,
which is compared with the desired position to yield an error signal for
actuating the steering mechanism.

8.2. Analog Computer. The electronic analog computer is a very
powerful tool for investigating the performance of control systems. For
more complex systems, the advantages of the analog computer become
more apparent. Analog computers are used for many purposes besides
that of investigating linear and nonlinear control systems. For exam-
ple, they are used to solve nonlinear differential equations, partial dif-
ferential equations, systems of differential or partial differential equa-
tions, matrix and eigenvalue problems, operational research problems,
ete. New applications and uses for this versatile computing device are
continually being discovered.

This chapter is primarily concerned with the use of these computers
for simulating control systems. For this purpose, the equation deserib-
ing the operation of the analog computer is analogous to that which
represents the actual physical system. The variable quantities of the
actual system such as the output, input, error, ete., are represented by
voltages at various places within the analog computer. Permanent
records of these voltages may be obtained by using recording equip-
ment. By using potentiometers or variable capacitors to vary the
resistance or capacitance at various places within the computer, the
effect upon system performance of changing the corresponding parameters
in the actual system (e.g., gain, time constants, damping ratio, etc.) may
be determined immediately.

To solve any linear differential equation with constant coefficients, it
is necessary only to make use of the processes of integration, summation,
and multiplication by a constant. This is illustrated by the block
diagram of Fig. 8.1 for the equation

Mj+ Cy + Ky = z(t) 8.1)

To set up the block-diagram representation for a differential equation,
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first solve for the highest-order differential appearing in the original
equation. The highest-order term appearing in Eq. (8.1) is M 9. Solving
Eq. (8.1) for My yields .

My =z(t) — Cy — Ky ” - (8.2)

Successive integration of the highest-order differential and multiplica-

tion by appropriate constants yields the other lower-order terms. That
is,

) = ¢y .
.3
B 0g) = Ky

Each term on the right-hand side of Eq. (8.2) goes into the summer of
Fig. 8.1, so that the output of the summer is proportional to the accelera-

tion. Successive integration of this acceleration yields the velocity and
displacement.

x(¢) +/£My) c ey | K Ky

Mp Cp g

Fi1a. 8.1. Block diagram for M3 + Cy + Ky = =z(¢).

The heart of the electronic analog computer is the operational
amplifier, which is a very-high-gain d-c amplifier. This device may be
used as an integrator, summer, or multiplier. The particular mathe-
matical operation depends upon the particular network of resistors and
capacitors which are placed around it.

8.3. Computer Operations. In Fig. 8.2 is shown the schematic repre-
senfation of an operational amplifier. The in- -
put voltage is e;, the output is es, and the am- e /—A\ e,
plification is —A4. Thus

es = —Ae; (8.4)

The reason for the minus sign is that the ampli-
fier reverses the phase of the input. For most
operational amplifiers, the value of 4 is very large. Valuesof 4 may range
from 50,000 to 100 X 108.

Multiplication by a Constant. By feeding the input voltage through a
resistor R, and by putting a resistor R, in parallel with the amplifier as
shown in Fig. 8.3, a circuit for multiplication by a constant is obtained.
Because the input grid of the amplifier draws little or no current (a

Fia. 8.2. Schematic repre-
sentation for an operational
amplifier,
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typical value is 10~ amp),
: 11 = Iy (8.5)

The values of 7, and 7. are
._el—e,- .=6,‘—62
1, = R 12 oA (8.6)

Equating 7, and %, yields

€L — €& _ & — €
| B - R, 8.7
Usually e, is less than 100 volts; so for very large values of A, it follows
from Eq. (8.4) that e; = —e3/A = 0. The substitution of e; = 0 into
Eq. (8.7) gives

e = — &el , (8.8)

1
The value of the multiplication constant is —R./R;. When R, = Rj, the
constant is —1, which means simply that the phase of the input signal

has been inverted.

2
il il
—_— . e —_— ; €.
St /-A\ 2 = EYy Yy . /\-> 2

R, \/ R,

Fia. 8.3. Operational amplifier circuit for  Fic. 8.4. Operational amplifier circuit for
multiplying by a constant. integrating.

Integration. By replacing the resistor R, of Fig. 8.3 by a capacitor as
shown in Fig. 8.4, then an integrating circuit is obtained. The current
iz flowing through this capacitor is

1:2 = Czp(e.- - eg) (8.9)
By equating 7, and , as before, it follows that

At = Caples — &) (8.10)
1
Because e; = 0, the preceding expression reduces to
= _el
€2 Rlcﬂ) R C / () dt + 62(0) (811)

where e;(0) is the value of e; when ¢ = 0. In addition to integration, the
circuit of Fig. 8.4 also multiplies by the constant —1/R,C..

Summation. The effect of summation is obtained by placing the
desired quantities to be added in parallel at the input to the computer
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circuit. The output will then be the summation of the effect due to each
individual input. A general summing circuit is shown in Fig. 8.5a, and
a circuit to integrate more than one quantity is shown in Fig. 8.5b. A
* simplified notation for these various computer elements is also shown in
Fig. 8.5a and b. This schematic notation saves much effort in drawing
the computer diagram for a circuit.

—iM—— i R,

([—AA—
AR N I A
e

__o\N\,l_"
—

R R R
ez--(RJa e¢+R—Z eyt coe +IT,2: e,,)

(a)

€,(0)
€q Ra ia ‘ iz Cz
— (—> JI( e, 1
e Ry - R.C,
R o 1
) en” |1
e, Rn in L R,,Cz
1 [ 1 f 1
ez--(R,C-‘,{e" d‘*‘“"—RbCzofeb di+ oo +R,,Cz /e,. dt)+ ,(0)
0 .

(d)

Fic. 8.5. General summing circuits.

8.4. Computer Diagrams. Let it be desired to determine the computer
diagram for solving the following equation: -

v+ 8y+2y =2z (8.12)

The initial conditions are y(0) = 2 ft and #(0) = 5 ft/sec, and the
expected maximum values are y. = 5 ft, jm = 10 ft/sec, jm = 20 ft/sec?,
and z(t)» = 20 1b. Solving Eq. (8.12) for the highest-order derivative
yields

j=z() — 8 — 2y ' (8.13)

The general computer diagram for Eq. (8.13) is shown in Fig. 8.6a.
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e,(0) e3(0)

e=—Fk x(t) i,
| e;=kyy

es=ky=kyy 1_k4|

kyy 2k, kyx(t)-8k y—2k y=k,y

(»
Fi1c. 8.6. Computer diagram for § = z(f) — 8y — 2y.

In Fig. 8.6b, it is to be noted that the first amplifier, a summer, solves
Eq. (8.13). Other amplifiers merely integrate to yield desired terms.

The output voltage e, of the first amplifier is proportional to the
acceleration ¢ so that e; = k5. The voltage relationship for the second
amplifier, which is an integrator, is

-1 t
€y = -(131—02);[) e dt + 62(0) (8.14)

where (R,Cs), is the product of the resistance and capacitance for ampli-
fier 2. Substitution of e; = k)i into the preceding expression gives

_ =k [t
ey = @ECa: Jo 7 dt + e2(0) (8.15)

Because the integral of acceleration is velocity, it follows that
g = [ 9dt+ 90 (8.16)
Multiplication of the preceding expression by —k; yields
~kay = —k2 ['g dt ~ ki (0) (8.17)
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Equation (8.15) is the voltage relationship for the amplifier, and Eq.
(8.17) is the corresponding physical relationship for the system. It is
desired to have e; equal to —k.y so that the voltage is proportional to the
- velocity. This is accomplished by equating the right-hand sides of
Eqgs. (8.15) and (8.17); thus

-k
(R1C3)e

t ¢
Ogm+mm=—mﬁyw—mw»

Because corresponding terms in the preceding expression are equal, the
following relationships must hold:

Ak
®iCo): b

Each integrator may be initially biased by a d-¢ voltage to give the effect

of initial conditions, as is repre-

sented diagrammatically at the top I"e (0)~.!
]

and e2(0) = —kqg(0) (8.18)

of each integrator in Fig. 8.6a. In

practice, the initial condition is l

obtained by placing a source of con- £<0,/” '
stant potential such as a battery of 20\, E
potential €;(0) in parallel with the T ™~

capacitor, as is shown in Fig. 8.7. AAA—
For ¢t < 0, the switch is up so that \/ :
the battery can charge the capacitor F1e. 8.7. Circuit for obtaining initial
to the desired initial value. At conditions. :
t = 0, the switch moves down to disconnect the battery from the circuit
so that the integrator circuit functions as previously discussed.

The voltage equation for the third amplifier circuit is

-1 t k
e = —(RlCz)s/; e dt + e3(0) = & é 5 ydt + e;(0) (8.19)

Because the integral of velocity is displacement,

y= [ odt+y0 (8.20)
Multiplication of the preceding expression by ks gives
kay = ka [ 9 dt + kay(0) (8.21)

In order to have e; = k;y, by comparison of Egs. (8.19) and (8.21) it
follows that
1 ks

Bl ke 2md es(0) = kay(0) (8.22)
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Similarly, the voltage equation for amplifier 4, which multiplies by a
constant, is o

- Ry _ R
. €y = 1_3; €3 = R, kzy (823)

The desired relationship for amplifier 4 is

ey = Ic4y . (8.24)
Thus it follows from Egs. (8.23) and (8.24) that

Ry ks

R ks (8.25)

There is never any need to apply an initial voltage e(0) to account for
initial conditions when an amplifier is used to multiply by a constant.
Only integration requires initial conditions.

Scale Factors. The quantities ki, ks, ks, and k, are scale factors which
relate voltages in the computer to corresponding physical quantities. In
general, it can be shown that the scale factor for the output of an ampli-
fier is equal to the scale factor of the input quantity times the value of
—1/R,C; for an integrating amplifier or the value — R,/ R, for a summing
amplifier. This is apparent from Fig. 8.6a, in which

-1 -1 ~Rs

—~k: = i ZAP ky ks = ®iCos (—k2) ki = o (—ks) (8.26)
An amplifier always reverses the sign from the input to the output.
Thus, the sign of the scale factor changes in going from amplifier to
amplifier, as shown in Fig. 8.6a.

e1 = kij ez = —kay es = ksy e« = kg (8.27)

The first amplifier is the one which actually solves the differential equa-
tion. To obtain e; = kyj, Eq. (8.13) is multiplied by k..

klg'j = klx(t) - 8k1y - 2k1y (8.28)

Because of the change of sign as a quantity goes through an amplifier,
the negative of each term on the right-hand side of Eq. (8.28) must be fed
into the first amplifier to obtain kf, as is shown in Fig. 8.6b. That is,
the input to the first amplifier must be

—kuz(t) + 8kiy + 2kwy (8.29)

Because ksy is available as the output of the third amplifier, then multipli-
cation by 2(ki/ks) yields one of the desired inputs, 2k;y. In order to .
obtain the correct sign for the second term in Eq. (8.29), it is necessary
to use amplifier 4 to change —kqy to ksy. Multiplication of k:y by
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8(ki/ks) yields 8ky. The remaining term —Fk.z(f) is obtained by
multiplying the input signal —kz(t) by ki/k. Each of these constant
multiplication factors is shown in Fig. 8.6b at the input to the first
. amplifier.

A more direct method for obtaining these factors is to write Eq. (8.28)
as a function of the available terms kz(t), k.3, and ksy. That is,

k
kit = — 2 (ko] — ¥ bl — 2 (b (8.30)
The voltage equation for the first amplifier is
- _B R B
e = R. € Rs €4 R. €3 (8.3 1)

In order that e; = kg, it follows from Egs. (8.30) and (8.31) that

B, _k Ry _8k R:_2k
R. % R Tk R. ks (8.32)

Thus, the coefficients in front of the brackets of Eq. (8.30) represent the
ratio of the resistors to be used at the input to the first amplifier. Simi-
larly, the terms within the brackets of Eq. (8.30) are the input quantities
to the first amplifier. Because the term —ki.y which exists in the .
computer has the opposite sign of ky in the brackets, it is necessary to
multiply by —1 in the feedback path.

Because the voltages e, e, e, and e; correspond to values of qua.ntltles
in the physical system [¢ = —kz(t), ex = kijj, es = —ka, s = kay], it is
necessary to select the value of the scale factors k, k1, ks, and ks in order to
interpret the results. For most computers, the voltages e, ei, e, and e;
should be limited to within 100 volts. Thus, the scale factor may be
obtained from the equation

Scale factor = : 100
maximum value of parameter

(8.33)

From the originally given information, the scale factors are computed as
follows:

100 _ 100 _
k= m = -2—0' =5 VOltS/lb
k= &0 - 100 5 volts/ft/sec?
Um 20 8.34
100 _ 100 1 lta/f (8.39)
ke = Z: = —16' = Ovots/t/sec
100 _ 100

ks = — = — = 20 volts/ft
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Substitution of the preceding results into Fig. 8.6a and b yields the final
scaled computer diagram shown in Fig. 8.8, where the values of the
initial voltages e2(0) and e;(0) are computed as follows:

e2(0) = —kyy(0) = —10(5) = —50 volts (8.35)
e3(0) = ksy(0) = 20(2) = 40 volts (8.36)

The procedure for setting up an electronic analog computer to solve a
differential equation of order n may be summarized as follows.

1. Solve the differential equation for the highest-order derivative.
For example, j = z(f) — Caf — Cay — Cyy.

2. Write each term of the right-hand side of the preceding expression
as a function of the voltage e, = k:jj and the input voltage e = —kx(f)

[’4
10
-4 1

Fre. 8.8. Final computer diagram.

e,(0)= =50 e,(0) =40

—5x(t)

and each successive voltage that appears after integration (that is,
es = —koj, es = k31, e = —kay). Multiplying the expression in step 1
by k, yields
.. ki kyp, . ki, . ky
kij = - [kx(@®)] — Ca5= [kagf] — Cs - [ksy] — Ci=[kay] (8.37)
k ’Gz ks k4

The input to the first amplifier should be the negative of the right-hand
side of the preceding expression, i.e.,

b ko] + B k] + G B ) + B e @39)
2 3 4

The coefficients in front of the brackets are the ratio of the resistors
(that is, R2/R,, Ra/Rs, . . . , R2/R.) to be used at the input to the first
amplifier. When the sign of the term in the computer is opposite to that
of the corresponding term in the brackets (for example, ez = —k,j and
es = —kgy), use an amplifier to multiply the feedback signal by —1.

3. The value of 1/R,C, for each integrator is equal to the ratio of the
scale factor for the output voltage term to that for the input [ for example
(I/Rlcz)z = ’Cz/kl, (l/Rng)a = k:;/kz, . . ]

In accordance with Eq. (8.33), the value of each scale factor is seen to
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depend on the maximum value of the corresponding parameter. For
most systems being studied, there is usually sufficient information avail-
able to make a reasonable estimate of the maximum value of each term.

If an error is made in predicting the maximum value of a term, then the
" maximum value of the voltage corresponding to that term will not be
100 volts. Such a situation is easily detected and is corrected as follows:
Suppose that the maximum value of the voltage e, is found to be 50 volts
rather than 100 volts. The original scale factor was &k, = 5, so that the
maximum value of 7 is now found to be §. = e /k1 = 5% = 10 ft/sec?
rather than 20 ft/sec?. Thus, the value of &, should be k&, = 109{¢ = 10
rather than 5. It is an easy matter to revise the computer diagram using
ki1 = 10 so that the maximum value of the voltage e; will be 100 volts.

8.56. Time Scale. For many problems, it is desired that the speed at
which the analog -computer solves the problem be different from the
speed at which the phenomena actually occur. For example, various
phenomena of astronomy require years; so obviously it is desirable to
increase the speed at which such problems are solved on the computer.
For other phenomena which take place very rapidly, it is necessary to
slow down the speed at which such problems are simulated by the com-
puter. By letting ¢ represent the time at which a phenomenon actually
occurs and the term r represent the time required for this phenomenon to
occur on the computer, r = af relates the actual time ¢ to the computer or
machine time . For a < 1 the phenomenon occurs faster in the com-
puter than it does in nature. For example, if a = 0.1, something which
requires 10 sec actually to complete is completed by the computer in
r=01=0.1X 10 = 1 sec. Similarly, if a > 1, the phenomenon is
_slowed down by the computer.

Illustrative Example. Let it be desired to slow down the computer
solution of the preceding problem by a factor of 5. The first step in the
solution of this problem, is to transform the original equation from a
function of actual time ¢ to a function of machine time . This is accom-
plished by noting that

T=al (8.39)
and g—; —a (8.40)
‘ g =W _drdy _  dy
Thus V=% " @dar %ar (841
] = izg - .d_ iy_ - i’:i a@ - a2 ‘dﬁ/ .
Y= “a\at)~ @d\"a) " ¥ @
Similarly, it may be shown that in general
@y _ &Y
a—t;' =aq p (8.42)
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Application of the preceding rules to convert the original time expression
given'by Eq. (8.12) froni a function of ¢ to a function of = gives

+ 8a + ==z (a) (8.43)

where z(r/a) is obtained by substitution of r/a for t in the original function
z(f). Because of the change of variable, the term y in Eq. (8.43) is now

L x(2) ‘x(r/S)

] i > 1 1

1 1 o
0 1 2 3 ¢ 0 5 10 15 7=5¢t

F1a. 8.9. Graphs of x(f) versus ¢ and z (%) Versus r.

a function of r rather than {. To slow down the solution by a factor of 5,
the value of @ is 5 so that Eq. (8.43) becomes

+ 40 + 2y ==z (5) (8.44)
The transformed initial conditions are

- % (8) = 1 ft/sec (8.45)

Similarly, the transformed maximum values are

a’y dry\ _ 20 _ 2
(d‘rz) (dtz) 25 = 0.8 ft/sec

ay)\ _1l(dy)y _10
(d-r) (dt) == = 2.0 ft/sec

As is shown in Fig. 8.9, the function z(r/5) is obtained, in effect, by
multiplying the original time scale by the factor ¢ = 5. Thus, a time-
scale change does not affect the initial and maximum values for z(s/a).

(8.46)

Similarly, the initial and maximum values for y are unaffected by a -

change in the time scale.
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The new scale factors are computed as follows:

100 100
= AV = — = 5 volts/1b
k= __100 —1@ = 125 volts/ft/sec?
@y/dr)n 647
100 100 les/f (8.47)
ks = m = —2' = 50vots/t/sec
ks = %’ = _12_0 = 20 volts/ft

The computer diagram is now obtained by application of the general
procedure given in the preceding section. Solving Eq. (8.44) for d%y/dr?
and multiplying by the scale factor k; = 125 gives

dy _ 125 (r\ _ 125 X 40dy 125 X 2y’
12554 = 125 X 2y

25 “\5 25  dr 25
=5z(%) - 200% — 10y (8.48)
5 dr )

The right-hand side of Eq. (8.48) is next written in terms of the voltages.
That is

d? y 5 T 200 dy _ 10
The negative of the right-hand side of Eq. (8.49) is

S| ke (2 2001, dy| 10

2| k()] + 2 [ %] + 2w (8.50)

Substitution of the numerical values for the scale factors in the preceding

expression gives
, T dy
1 [-—5x (5)] + 4 [50 @] + 0.5[20y] (8.51)

The resulting computer diagram is shown in Fig. 8.10a.

The coefficients in front of the bracketed terms of Eq. (8.51) are the
effective input multipliers at the first amplifier. The multiplication
factors for the second and third amplifiers are obtained as follows:

(8.52)
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€,(0)= —50 e,(0)=40
~5x(7) a2
et | e1=125d—y2 e2=—50—:l
05 LA z
e
dy
50 92 |
§
(a)

(&)

22(0)=50 e3(0)=—40
-5x(t)

i r=503(7) = 203()
(04)
4

_' ®

@ :
{c) \

. dy T dy
F1c. 8.10. Computer diagram for 25 ik ( 5) — 40 Fa 2y.

The values of the initial voltages e;(0) and e;(0) are computed in the
following manner:

e(0) = ks Y

E r=0
0= 20(2) = 40 volts

= —50(1) = —50 volts
(8.53)
63(0) = ksy

r =

If it is not necessary to measure d2y/dr, the first amplifier may be elimi-
nated by multiplying the input constants of the first summer by the factor
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0.47for the next amplifier [that is, (1)(0.4) = 0.4, (0.5)(0.4) = 0.2, (4)
(0.4) = 1.6], as shown in Fig. 8.10b. The elimination of this amplifier
changes the signs of the resulting voltages, and thus the sign of each
* feedback quantity must be reversed. Similarly the sign of each initial
condition voltage must be changed.

Some operational amplifiers such as the REAC (Reeves electronic
analog computer) use standard resistors of 1 X 10% 0.25 X 10°%, and
0.10 X 10® ohms and a standard capacitor of 1 X 10~-® farad. Thus,
only gains of 1/RC equal to 1, 4, or 10 are readily available for each
integrator. It is possible to put two resistors in parallel or series at the

e e;

- Fia. 8.11. Potentiometer.

input to obtain some other effective value of resistance. For example,
two 1 X 10° ohm resistors in series yield a 2 X 10¢ ohm resistance, while
two 1 X 108 ohm resistors in parallel yield a 0.5 X 10° ohm resistance.

In general, it is necessary to use a potentiometer to obtain the desired
effective resistance. Figure 8.11 shows a schematic diagram of a
potentiometer. The voltage relationship is

€ = % €in = kei;
R“ (8.54)
where F=2<1

a

The computer diagram of Fig. 8.10b may be modified by the addition of
three potentiometers as shown in Fig. 8.10¢ such that only gains of 1, 4,
or 10 are necessary at each amplifier. By comparison of Fig. 8.10b and ¢,
it is to be noted that the effective gain of an amplifier is the product of the
gain of the amplifier and the value of k for the potentiometer in front of
the amplifier.

8.6. Simulation. A very important application of the analog com-
puter is the simulation of automatic control systems. One method that
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could be used to simulate a control system would be to determine the
over-all differential equation and solve this on the computer. Usually
though, one is interested in determining the effect on the system per-
formance when certain parameters are varied. Using the preceding

Z,

€

z, (5> :
2

Fi16. 8.12. General schematic representa-
tion of an operational amplifier.

technique would mean solving a
new differential equation for each
change.

Because of the similarity between
a block diagram and a computer
diagram, it is customary to simulate
each portion of the system and then
interconnect each of these elements.

Thus, the effect of changing one of the terms in the original block diagram
may be accomplished by changing the corresponding quantity in the com-

puter diagram.

In Fig. 8.12 is shown a schematic representation of an operational
amplifier in which the input impedance is Z; and the parallel impedance is

11Cz
n

TaBLE 8.1

P S,
R,(1+R,C,p)
€2

R
ez"‘ITf(“'Rlclp)‘l

vav, %

12

N

e -R,C\p e
2 1+R,Cop !
€2

VAL

1(C2

LAY

_ RZ 1+R1C1p,¢
R, 14RCp !
€2

vt
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Zs. The equation of operation for this amplifier is

€2 - g_z_

e = "z, (8.55)
When the input impedance is a resistor B, and the parallel impedance is a
resistor R, the preceding expression reduces to the result given by
Eq. (8.8). For the case in which Z; = R; and Z; = 1/Csp the result
given by Eq. (8.11) is verified.

d(t)
rit) +.~ e(t) K, |mit) + 9 K, elt)
A S | 147D o
(a)
—
jl(C‘ e~ hyd(t), $—ah—i
_ R
c,.-k,.r(t) ARArA /\ AAA /\ Ce-kcc(‘)
Y "~ em=—Ramit) R\
3 .
VWA Rh a— Equal
VYWV resistors
ep=—koc(t) l
¢ /\ AMA
(5) ~J By

Fia. 8.13. Block diagram and corresponding computer diagram.

In Table 8.1 is shown a number of computer circuits for simulat-
ing various transfer functions. For the first circuit Z, = R; and
Zy = 1 _ R,

l/Rz + Czp 14 RzC:p .
impedances into Eq. (8.55) gives the equation of operation for this com-
puter circuit, i.e.,

Substitution of the values of these

IR - BN
R1(1 + chzp) !

In Fig. 8.13a is shown a typical block diagram, and the corresponding
computer diagram is shown in Fig. 8.13b.

Illustrative Example. Suppose that the system shown in Fig. 8.13a is
used to control the angular position of a shaft. For this system, it is
known that K, = 10, K; = 5, and r = 1.0. The maximum values have

(8.56)

€2 =
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been estimated to be ¢(f)m = 20 radians, 7({)m = 10 radians, ms = 50 in.-lb,
and d(f)m = 100 in.-lb. Determine the values of the resistors and
capacitors for the computer diagram of Fig. 8.13b.

soLuTioN. The voltage equation for the first amplifier is

-1 [t 1 t '
en = cheﬁ e dt — ——RCCG[) e dit + e.(0) (8.57)
The substitution of e, = k,r(f) and & = —kec(t) into the preceding expres-
sion gives
-k, [t J k. ¢ p o
em = RrC,/o r(t) dt + RcCe/; c(t) dt + en(0) (8.58)

The equation which describes the operation of the corresponding portion
of the actual system is

m(t) = Ki /0‘ [rt) — c(®)] dt + m(0)
= K [} r) dt — K [, o(t) dt + m(0) (8.59)
Multiplication of Eq. (8.59) by —k. gives
—knm(t) = —knK [0‘ r(t) dt + knK: [ s e(t) dt — kum(0) (8.60)
In order that e, = —knm(f), by comparison of corresponding terms in

Eqgs. (8.58) and (8.60) it follows that

1 _ kal 1 - kal
RC, k& RC, k. ‘
For any system knm, k., ke, R,, and R, are constant, and thus the gain K,
may be changed independently by varying the capacitance C..
Numerical values are obtained by first computing the scale factors,
thus,

en(0) = —kam(0)  (8.61)

k, = 109, = 10 volts/radian
k. = 1095, = 5 volts/radian
kn = 109¢, = 2 volts/in.-lb (8.62)
ks = 10940 = 1 volt/in.-lb
From Eqgs. (8.61), it follows that
1 _ (2K _ 1 (2K _ _
BEC.- 10 - 2 RC.= 5 = 4 ex(0) = —2m(0) (8.63)
If a 1-uf capacitor is used for C.,
1 1
R, = 50, = W = 500,000 ohms (8 64) *
R. L 250,000 ohms

= 4c,
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From Table 8.1, it follows that the voltage equation for the second

amplifier is
.____RB B ___
= T R.0l + RCp) ™ R.0+ RCp) ™

Substitution of em = —knm(f) and es = —kid(f) into the preceding

expression yields
_ R kmm(t) | kad(t)
ec - 1 + RCp [ Rm + Rd (8.66)

(8.65)

The equation for the corresponding portion of the actual system is

e(t) = (8.67)
Multiplication by k. gives ‘
Rel®) = T () + dO)] (8.68)

By comparison of corresponding terms in Egs. (8.66) and (8.68), it
follows that, to have e, = k.c(t), the following relationships must hold:

k
I;—km—sz %—sz = RC (8.69)
The substitution of numerical values gives
R _ kKo (5) (5)
Rn~ kn - (870)
R _ kK> _ (5)(5) -
R -1 25 (8.71)
RC=7r=1 (8.72)
If a 1-uf capacitor is used for C, ‘
= & = 1,000,000 ohms
R
R, = o5 = 80,000 ohms (8.73)
R
R; = o5 = 40,000 ohms

Because C appears only in Eq. (8.72), r may be varied independently
by varying C. A variable capacitor provides a convenient means for
varying C. From Egs. (8.70) and (8.71), it follows that to change the
value of K, both R, and Rs; must be changed accordingly. A variable
resistance is provided by a potentiometer.

Because the output e, is to be subtracted from the input e, it is neces-
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sary to multiply the output by —1, as shown in the feedback path of
Fig. 8.13b.

1If, in testing, it is found that e, 5 100 volts, this is evidence that the
originally estimated value for c(f). is not correct. Because e, = k.c(f),
the actual value of ¢(¢).. is now easily found to be

cB)m =3 (8.74)

When the maximum value of ¢(f) is near 100 volts, there is no need to
change the value of k.. However, if the maximum voltage is quite small,
then it is desirable to increase the accuracy with which the output voltage
can be read by using a new value of k. based on the value of ¢(t) obtained
from Eq. (8.74). Similarly, if e, was sufficiently greater than 100 volts
to cause overloading, then it would be necessary to decrease the value of
k.. For most amplifiers, an overload light turns on when the maximum
voltage is high enough to overload an amplifier.

A time-scale change r = at is readily effected by substituting ap for p
in the block diagram of Fig. 8.13a.

A major application of analog computers is in the design of systems
with nonlinear components. Standard electronic circuits are available
for simulating commonly encountered nonlinear effects such as coulomb
friction, backlash, dead zone, saturation, continuous nonlinear functions,
ete.

8.7. Digital Computers. As is discussed in Sec. 8.1, a problem must
be reduced to elementary mathematical operations before being submitted
to a digital computer. For example, consider the problem discussed in
Sec. 8.3, that is,

¥+ 8y + 2y = z(t) (8.12)

where the initial values y(0) and %(0) are known, as is the function x(?).
The initial value of #(0) is obtained by solving Eq. (8.12) for § and
substituting the given initial conditions into this expression, i.e.,

#(0) = =(0) — 8y(0) — 2y(0) (8.75)

By choosing a small increment At such that the slope 3(0) of the curve
of y versus ¢ may be considered to remain constant in the interval
0 <t <L At it follows that

y(at) = y(0) + y(0) At (8.76)

Similarly, if At is small enough so that the slope #(0) of the graph of
velocity vs. time does not vary appreciably,

7(At) = g(0) + (0) At 8.77)
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The value of §(Af) may now be computed from the original differential
equation, i.e.,
§(Al) = z(At) — 8y(At) — 2y(Ar) (8.78)

Similarly, the evaluation of each term at time ¢ = 2 At is accomplished as
follows:
¥(2 At) = y(Ar) + y(AY) At
7(2 At) = y(AY) + (Al At (8.79)
§(2 AY) = z(2 Af) — 85(2 At) — 2y(2 Ab)

Thus, in general, it follows that, at time ¢ = 5 Af,

y(n A = yl(n — 1) Af] + gl(y — 1) Af] At
g(n Al = gl(n — 1) Af] + §l(n — 1) Af] At (8.80)
Y(n Al) = z(y At) — 8y(n At) — 2y(n Al)

By continuing this process, values for y, 3, and 3 may be obtained for
any time n Af. Accuracy is increased by using smaller increments for
At. The preceding method for reducing a linear differential equation to
a sequence of simple mathematical operations is known as the straight-
line approximation method. Although more accurate techniques of
numerical analysis could have been employed, the preceding method
suffices to illustrate the fundamental concepts. It should be noticed
that it is necessary to store the initial conditions and values of z(t) at
t =0,4t2At 34t ... ,qAtin the machine so that they are available
for computation when needed. Similarly, the answers to Egs. (8.76) and
(8.77) must be stored in the machine so that 3(At) in Eq. (8.78) may be
computed, etc. Such storage devices in a digital computer are referred
to as memory units. In essence, then, numbers and directions are the
input to a digital computer, and the output is in the form of numbers.

Usually an analog computer can be set up to simulate a control system
much faster than it can be programmed for solution on a digital computer.
In addition, an analog computer tends to be more versatile and convenient
to use for most problems encountered in control work.




CHAPTER 9

FREQUENCY-RESPONSE METHODS

9.1. Introduction. The frequency-response methods to be discussed
in this chapter provide a convenient means for investigating the dynamic
behavior of a control system. By frequency response!~3 is meant the
response of a system to a sinusoidal input z = zo sin wf. After the effect
of the initial transients has “died out,” the output becomes a sinusoid

J
x=2xy 5in wt
X
Y
4

/| :
Lk

Fic. 9.1. Sinusoidal response.

Y=Y, sin (wt+¢)

with the same angular velocity o of the input. In general, the output
y = Yo sin (wt + ¢) is displaced some phase angle ¢ from the input, and
the amplitude of the output, yo, 18 different from that of the input, o,
as is illustrated in Fig. 9.1.

Both the phase angle ¢ and the ratio of the amplitude of the output to
that of the input, yo/x,, are a function of the angular velocity  of the
input signal. Graphs of ¢ versus and of amplitude ratio yo/Zo versus o
form the basis for frequency-response methods.

Both the Laplace transform method and the frequency-response
method are means for determining the dynamic behavior of control
systems. With the Laplace transform method, emphasis is placed upon

t H. Harris, The Frequency Response of Automatic Control Systems, Trans. AIEE,
vol. 65, pp. 534-545, 1946.

2. S. Brown and D. P. Campbell, ‘“Principles of Servomechanisms,” John Wiley
& Sons, Inc., New York, 1948. .
3 H. Chestnut and R. Mayer, “Servomechanisms and Regulating System Design,”
24 ed., John Wiley & Sons, Inc., New York, 1959.
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the characteristic equation. With frequency-response techniques, it
is not necessary to determine the roots of the characteristic equation.
A major advantage of frequency-response methods is that they provide
a good basis for synthesizing systems. That is, they indicate what type
of changes should be made in the system to yield the desired response.
9.2. Frequency Response. Because frequency-response methods are
based on a knowledge of ¢ versus w and Yo/To Versus w, it is now shown
how these quantities may be determined directly by substitution of jw
for p in the operational form of the differential equation for the system.
- The general operational form of a differential equation is

o) = (@np™ + Gmrp™ '+ - - -+ ap + ag)z() _ La(p)z(®) ©.1)
P"+ baap™ 4+ - - - 4 bip + by L.(p) ’

The transform of the preceding expression is

_ Ln(8)X(8) + I(s) _ Lu(8)Nxewy , I(s)

Y(s) = L.(8) " La(8)Dxw ' La(s) ©2)
The transform for the input is _
X(s) = £(zo sin wf) = =% _ Nz ©.3)

82 + w? - Dx(,)
Expanding Eq. (9.2) in a partial-fraction expansion and noting that
Dxwy = s* + w? = (s — jw)(s + jw) gives
K, K
Lo Ky K

s—r $§— 1, 8§ —jw

-+

K_¢
+s+jw
Il +_..+\ In

§—7r § — 7Ty

Y(s) =

9.4)

where 71, 75, . . . , 7, are the zeros of L.(s) and Ky, K, . . . , K, K¢
and K_¢ are the constants which arise from the partial-fraction expan-
sion of Ln($)Nxw/L.(s)Dx¢ and T , {2 . .., I, are the constants
which arise from the partial-fraction expansion of I(s)/L.(s). Inverting
Eq. (9.4) gives ’

y@O = (Ki+ Inyet + « - - + (K, + I)e
+ 3 1K (a + b)lesin (bt + ¢) (9.5)

For a stable system r1, 75, . . . , 7, must have negative real parts, so that
after sufficient time the effect of these terms becomes negligible. Thus,
for stable systems, the steady-state sinusoidal response y(f),, is deter-
mined by the last term of Eq. (9.5). Becausea = O0and b = w, it follows
that

YO = 3 1K) sin (ot + 6) 96)
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The terms |K(jw)| and ¢ = % K(jw) are evaluated as follows:
K(jw) = 1'1_’1? [(s* 4+ «?) Y (9)] 9.7

By noting from Eq. (9.2) that
_ La(X(s) , I(8)
Y(s) = L) + L@ 9.8)
T (s? + w?)Ln(8)wZo . o 1)
Lm(jw)wxo
= —F 75N ! 99

L.(je) ®9)
In the preceding development, the effect of the initial conditions is seen
to drop out so that y(f)., is independent of the initial behavior of the sys-
tem. The terms La(jw) and La(jw) are obtained by substituting jw for

p in La(p) and La(p). From Eq. (9.9) it follows that

Kol = | 523 | az 0.10)

e et - e Y, A B .t Ak e A Vs AR S

_  [EmlGe)
\ and o= X [L,.(jw)] WTo 9.11) ==
Substitution of Eq. (9.10) into Eq. (9.6) yie

y(t)u = ‘Ii%‘;_?)‘

From Eq. (9.12), the amplitude o of the steady-state responsé Y()ae 18
seen to be

Lo sin (wf + ¢) = yo sin (vt + ¢) (9.12)

— le(j“’) l

¥ = [LaGo) 1
The amplitude ratio is

vo _ | Lm(gw) | (9.13) €

— zo | Lu(jw)
It is now shown how to obtain plots of the amplitude ratio yo/zo versus

« and also phase angle ¢ versus w. Consider the first-order linear differ-
ential equation

y(t) = 1—+i,—p 2(t) 9.14)

The substitution of jw for p in the preceding equation yields
. 1 .
y(jo) = m:, z(jw)

y(]“’) — L'n(j"’) - 1
or 2Ga) — La(ja) — 1+ fro 9.15)
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The ratio of the amplitude of the output to that of the input is

vo _ | L) | _ 1
Zo L.(jw) V1 + (rw)? (0.16)
The phase angle ¢ is
1 .
=X 1+ e 9.17)

The angle of the numerator is % (1 4+ j0) = tan~-10 = 0. Thus, sub-
tracting the angle of the denominator from the angle of the numerator
gives o
¢=0— X(14jrew) = — tan"!rew (9.18)

In Fig. 9.2 is shown a graph of the amplitude ratio yo/zo versus w and a
graph of the phase angle ¢ as a function of the angular velocity w of the

}

1.0

0.707}-

%l% |

1 ]
0 1T 2/t 3/T @

0 1/r 2/t 3/T w
T

0

Fi1a. 9.2. Response curves for the funetion ﬁ,
forcing function. When  is small, the amplitude of the output is almost
equal to that of the input and the phase angle ¢ is quite small. The out-
put cannot keep up with the input at higher frequencies, and it begins to
lag behind the input. Forw > 1 /7 this effect becomes very pronounced.
From Fig. 9.2, it is to be noticed that, for a given w, the amplitude ratio
has a given value and also there is a certain phase angle ¢ between the
input and the output. This amplitude ratio | Lm(jw)/La(jw)| and phase
angle X L,(jw)/L.(jw) determine a vector Ln(jw)/La(jw). The path of
the tip of this vector (vector loci) for values.of w from zero to « is shown
in Fig. 9.3. This is called a polar plot. The polar plot shown in Fig. 9.3

T—

-
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is seen to convey the same information as the two separate curves shown
in Fig. 9.2. The polar plot for this first order system is a semicircle as
shown in Fig. 9.3. At w = 0, the length of the vector is 1, and the phase
angle zero. Atw = 1/r the phase angle ¢ = —45°, and the length of the
vector is 0.707.

The operation of the feedforward part of a control system is given by
the equation

o) = £ B e(t) = Gp)ett) 919)

When the actuating signal e(t) is a sinusoid [e(f) = eosin wf], then the
controlled variable ¢(f) is also a sinusoid [c(f) = ¢osin (ot + ¢)]. The
amplitude ratio co/eo and the phase angle ¢ are

e(jw)

Co - _ i

2 e(j“’)(. ) (G 9.20)
_ c(jo) | _ )

6= 2|29 - 1600

Thus the vector G(jw) completely describes the frequency response of the
feedforward elements. Similarly, the response of the feedback elements
is determined by H (jw).

'Y In Chap. 6 it is shown that, when
the initial condilions are zero, the

L e 05 10 Real  substitution of s for p yields directly
o=t w=0] axis  the transform of the differential equa-

tion which s called the transfer func-
tion. Thus, etther the substitution
of jw for p in the differential equation

2 . . . y
—osl 2 —05 or the substitution of jo for s in the

| W=+ . ) transfer function gives the vector equa-
FIGi 9.3. Polar plot for the function . . for evaluating the frequency
= response. -

9.3. Logarithmic Representation
of Frequency Response. Frequency-response methods are based on the
response G(jw) of the feedforward elements and H(jw) of the feedback
elements. The transfer functions for these quantities are G(s) and H (s),
respectively. These quantities are usually obtained in factored form and
are composed of multiples or ratios of one or more of the following types of
terms: s, 1 + 78, (s2 + 2{wns + wa?)/wa?. The substitution of jw for s
means that G(jw) or H(jw) will be composed of terms such as jo, 1 + jro,
or (wa? — w? + j2twaw)/wal. To obtain the resulting polar plot, the
multiplication of such terms is simplified by the use of logarithms. For
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example, let the value of G(s) be given by the equation

K
G(S) = m (9.21)
Substituting jw for s yields :
. K
The magnitude of Eq. (9.22) is
. K
|G (jw)| = e[ 1+ jra| (9.23)
Taking the logarithm of the preceding expression gives
log [G(jw)| = log K — log |jw| — log |1 + jrw| 9.24) =<

log |G(jw)| — log K = — log w — ¥4 log (1 + 7%w?)

The angle ¢ is
¢ = XG(jw) = — Xjo — (1 + jrw)
= —90° — tan™! 7w (9.25) -

By using logarithms, the effect of each term is added separately if it
appears in e HUImerator Of 18 SUbLIECTed i it is in the denominator.
The contribution due to the 1/jw term is shown In Fig—9%. The equa-
tion for the amplitude is log [1/jw| = — log w. When wis 1, the value of
—log w is 0, and when w changes by multiples of 10, the value of —log w

A }
20} 1t
-3 3
45 0 ¥ O | ~1 log unit/decade
¥ ! SIO0PE=19 or —20db/decade .
Q -t '
] S R
B
-401 -2 ‘\
i 1 1 1 I
0.01 0.1 1.0 10 100 w
0.01 0.1 1.0 10 100 w
la 1] T T T T -
F‘_.\
" —45°-
-~ 90°
Y

1
F1a. 9.4. log-magnitude plot for .-7—;
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changes in increments of 1. The slope of this straight-line logarithmic
response shown in Fig. 9.4 is —1 log unit/decade. A decade is the
horizontal distance on the frequency scale from any value of w to ten times
. Thus, the distance from «w = 1 to w = 10 or from w = 3 to w = 30,
ete., is a decade.

The vertical log-magnitude scale is sometimes expressed in decibel
“units. To convert the vertical log-magnitude scale of Fig. 9.4 1o decibel
units, it is necessary only to multiply by a factor of 20. In using decibel

S

|
ik
Low-frequency
T asymptote \ H
& —— igh-frequenc;
i K asymptote Y
L]
» b Slope=
- ~1 log unit/decade
-2
1 1 1
001/7 0.1/7 1.0/7 10/7 100/7 w
0.01/r 01/r 1.0/7 10/r 100/7 w
. é = T T
+ - —45°
¥ wf———— T
]
° Y

1
1+ jro
units the slope is —20 db/decade rather than —1 log unit/decade. In
this text, the log-magnitude scale is expressed directly in logarithmic units
rather than decibels.

The contribution due to log |1/(1 + jrw)| is shown in Flg 9.5. For
small values of w such that o K 1/7,

—log (1 +7%?%) = —~5logl =0 , (9.26)

This is the equation for the low-frequency asymptote to the exact
curve, as is shown in Fig. 9.5. For v > 1/7,

—15log (1 + 7%w?) = — 14 log r2%0?® = —log rw (9.27)

This is the high-frequency asymptote. When « = 1/7, the value of
—log rw is zero, and for w = 10/r, the function is —1, ete. The slope of
this high-frequency asymptote is thus seen to be —1 log unit/decade.

Fi1c. 9.5. log-magnit;ude plot for
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For most preliminary design work, the asymptotes are sufficiently close
to the exact curve so that the extra effort involved in using the exact curve
is generally not warranted. The maximum error occurs at the “‘break fre-
. quency” (w = 1/r) andis 0 — Y4 log (1 + 1) = — 0.303/2 = — 0.1515.
It should be noticed that Fig. 9.5 is applicable for any value of 7. Thus,
the same curve may be used to represent various functions of the form

(1 4+ 718)(1 + 728) - + - by using aseparate scale for each break frequency,
A
3 o
- —1 log unit/decade
+
N — 1k
g
-2
j I
001/, 0.1/7 1.0/1'l -10/7, 100/7, w
t 1 1 1 1
001/7, O.l7, 1.0/7, 10/, 100/7, w
L 1 1 L] 1
0.01/13 0.1/7 1.0/, 10/7, 100/1'3 w
0 . -
~ ‘3; T T p
¥ -5
N —
g Y

1
Fia. 9.6. General plot for T+
as is shown in Fig. 9.6. The break frequency is located directly under the
intersection of the two asymptotes.
The phase-angle curve is obtained by solving the equation

¢ = — tan~! 1w (9.28)

In Fig. 9.7, it is shown graphically how Figs. 9.4 and 9.5 may be added
to solve Eqgs. (9.24) and (9.25). For numerical purposes, it is assumed
that the value of 7 is 0.1 sec. For w > 1/r = 10, the slope is the sum of
that due to the 1/jw term plus that due to the high-frequency asymptote
of 1/(1 + jrw), that is, —2 log units/decade. Such graphs o
magmtude vs. log frequency are called log-magnitude or Bode diagrams.
H. W Bode made many contributions to the development of frequency-
response techniques.

A feature of the logarithmic method is that, if the term appears in the
numerator rather than the denominator, it is necessary merely to change

o
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the sign of the amplitude and phase-angle scales in tabulating the result.

For example, 1T Iq. (9.22) were of the form T ——

G(jw) = _Igg}-:_;@ (9.29)
then log |G(jw)| — log K = —log w + 14 log (1 + 7%w?) (9.30)
and XG(w) = —90° + tan™! 7w (9.31)

By comparing Eqgs. (9.30) and (9.31) with Eqgs. (9.24) and (9.25), it is seen
that only the sign of the term which went from the denominator to the
numerator has changed. In Fig. 9.8 is shown the log-magnitude diagram
for G(jw)/K = (1 + jrw)/jw, in which the value of r is assumed to be
0.1 sec. Comparison of the log-magnitude diagram for 1 + jre of
Fig. 9.8 with that for 1/(1 + jrw) of Fig. 9.7 shows that the sign of the

1
0
—3
s
20
_O -'1 0.
~|3
,<|r'~-45°
=2r N -90° —t—
1 1 L ! . L t I .
01 10 10 100 @ 01 10 10 100
3
+Z o
X
g 4 X
0
= -1 ol
3l l
2— 1 E
& -2 ' 5 —9%°
\ N -13s°
-3 N -180°
T L | - 1 L 1 L

01 10 10 100 o 01 10 10 100 w

. Gijw) . 1
Fic. 9.7. log-magnitude plot for K = ol +j0.1)

.3‘*’"\"')1 f#/":| 10
| - — e 13S
- 20° - Lo -
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logarithm of the amplitude ratio and the sign of the phase angle have been
change —
The third type of term which occurs is of the form (w,? — w? + j2fwnw)/
.w,2. By using a generalized graph, this term may be treated in a manner
analogous to that described for using Fig. 9.6 to evaluate terms of the form

1 + jrw. Consider the function

. _ K1 ’
G} = (1 ¥ jr0) (@n? — & + j2Fwnw) (9.32)

This may be rewritten in the form

K
G(jo) = PR (9.33)

wn?

where K = K;/w,2
s

1k
— 0
~2
g
-1 0 -
~|2 _45e
-2 K >¢ —90°
T ! L,
0.1 1.0 10 100 w
£l ¢ 3
o —
+ 3
® o 5
g ¥
1
—_ 0 3
3% 3
L] <]
= -1 | )
L

3} §

|
1
0.1 1.0 10. 100

1+ 50.1w
Jw

Fi16. 9.8. log-magnitude plot for
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The logarithm of the magnitude of the quadratic term is

‘ 1 1
o8 | T =G/ T + 25 Carany | = 18 VI = /e T XKl

([ G 2]

For small values of w/w. such that w/w, < 1, Eq. (9.34) becomes
—l5logl =0 (9.35)

This is the equation for the low-frequency asymptote which is a horizontal
straight line like that obtained for a 1 + jrw term.

The equation for the high-frequency asymptote is obtained by noting
that, for w/ws >> 1, in Eq. (9.34) it follows that

[ @) - @) > (2)
Wn Wn Wn
Thus, for w/w, > 1, Eq. (9.34) becomes

1 w \* w

The slope of the high-frequency asymptote is —2 log units/decade, and

this asymptote intersects the low-frequency asymptote at w/w, = 1.
The value of the phase angle is e

' 28 (w/wn)

T= @/wn)? 030

The nondimensional curves for the logarithm of the amplitude and the
phase angle as given by Eqs. (9.34) and (9.37), respectively, are shown in
Fig. 9.9. The curves for the reciprocal of this function are obtained by
merely changing the sign of the amplitude and phase-angle scales.

In summary, then, for any function which is composed of multiples of
terms such as jw, 1 + jrw, and (wa? — w? + j2fwaw)/wa? the value log
G(jw) — log K and the X G(jw) at any given angular velocity » of the
driving sine wave is the sum of the contribution due to each term which is
obtained from Fig. 9.4, 9.6, or 9.9. Thus, having the |G(jw)| and the
X G(jw), one may construct a polar plot of |G(jw)|, as was demonstrated
by Fig. 9.3. :

Ezperimental Determination of Frequency Response.! A feature of
frequency-response methods is that the response G(jw) and H (jo) may be
determined experimentally. For example, at a given frequency w, the

!R. A. Bruns and R. M. Saunders, ‘“Analysis of Feedback Control Systems,”
chap. 14, McGraw-Hill Book Company, Inc., New York, 1955.

¢ = — tan™?
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value of G(jw) isobtained by exciting the feedforward elements with a
sinusoidal input of angular velocity « and then measuring the ratio of the
amplitude of the output to that of the input and also measuring the phase
. angle ¢. By repeating this process for a wide range of values of w

o

| Lt =01
T N
3 TN >( 04
S ~60° I, 0.6
T RS
3|+ NS 10
o~
]
Ng
3 —120° \\
X \\\\\‘
\\\\ L
-180° =t
0.1 0.2 04 0508 1 2 4 6 8 10
%-—
1
V
3 44/
3
3 0
Yy =T~ igh-frequency
Nl S I~ -
3|+ ™ asymptote
3
|
g
3
® -1
\\ |
N
-2 N
01 0.2 04 06 08 1 2 4 6 810
w
o
wa? 1

F1a. 9.9. log-magnitude plot for ot — ot T o =T el F 2t /w..)'
the frequency response is obtained. The response H(jw) is similarly
obtained by sinusoidally exciting the feedback elements.

In Fig. 9.10 are shown the asymptotes of an experimentally determined
log-magnitude plot. Because of the change of slope at «;, there is a term
1/(1 4 jriw) wherer; = 1/w;in the frequency-response equation. At the
angular velocity ws there is a net increase of +1 log units/decade, and
thus the term 1 + jraw, where 723 = 1/we appears in the numerator of the
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response expression. The change in slope at w; is indicative of the term
1/(1 + jraw), where 73 = 1/w;. Because the slope changes by —2 log
units/decade at ws, there is a quadratic term in the denominator. The
e3p Value of the break frequency w, is equal to the natural frequency w, for
the quadratic. That is, from Fig. 9.9, it follows that at the break point
for a quadratic w/w. = ws/ws = 1 Or w, = ws. To determine the damp-
ing ratio ¢, it is necessary to comparé the-exuct response curve for the
componemmmmnml
response curves of Fig. 9.9. From the preceding, it follows that the
. frequency response for G(jw) is

K(1 4 jrw)
TF )0 Groolllent — o F fwa) o]

In the next section, it is shown how the value of K can be determined

directly from the low-frequency portion of the log-miagnitude diagram.

It is a rather lengthy process to

excite control elements at various

frequencies in order to obtain ex-

perimentally the frequency re-

sponse. An alternative procedure

is to determine the transient re-

=3 log sponse to some known input and

then use the method presented in

Appendix III for calculating the

1 frequency response from the tran-
sient response.

Fi16. 9.10. Experimentally determined log- After the equation for the fre-

magnitude plot. quency response has been experi-

mentally determined, it is a simple matter to substitute s for jw to obtain
the transfer function. The substitution of s for jo in Eq. (9.38) gives

K (1 + 1'28)
(1 + 1'18) (1 + 1'38)[@-}- 2§‘w4s + w42)/w42]
Similarly, the substitution of p for s gives the differential equation of
operation. -
agnitude of 1 4+ jrw is the same as that of 1 — jrw. However, as
the phase angle for 1 + jro goes from 0 to +90° the phase angle for
1 — jrw goes from 0 To —90°. Most systems are minimum-phase sys-
tems;!i.e., all factors are of the form jw, 1 + jrw, or (w.2 — w? + J2¢ waw)/
w2,  For minimum-phase systems, as w becomes infinite, the phase angle
is ¢ = —90°(n — m), where n is the order of the denominator and m that

1]J. L. Bower and P. M. Schultheiss, “Introduction to the Design of-Servomech- .
anisms,” John Wiley & Sons, Inc., New York, 1958.

G(jo) = (9.38)

‘ —
-1 log unit/decade

log IG (yw)!

|
|
|
|
|
|
|
|
|
1
1
!
w.

£
£

1 2 3

G(s) = (9.39)
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of the numerator. Non-minimum-phase systems may be detected from
the phase-angle plot, because as w becomes. infinite ¢ = —90°(n — m).
For either minimum or non-minimum-phase systems the slope of the log-

, magnitude diagram at high frequencies is —(n — m) log units/decade.

9.4. Evaluating the Gain K. In general a transfer function may be
expressed in the form

Ka{(1 + 7a8) * * - [(8® 4 28awn, 8 + wn2)/wnd - -}

G(s) = st {(1 +718) -+ - [(8% + 261wa,8 + w0 /w0n?] - -+

(9.40)

where K, is the over-all gain of the transfer function G(s) and = is the
power to which the s term in the denominator is raised. Usually the
value of nis 0, 1, or 2. The first time constant in the numerator is 74, the
second 7, etc. The natural frequency for the first quadratic term in the
numerator is w.,, and the damping ratio is {,. Similarly, r; is the first
time constant which appears in the denominator, the second s, ete.
The natural frequency for the first quadratic term in the denominator is
wn,, and its damping ratio is {1
The substitution of jw for s in Eq. (9.40) gives

Ka{(1 + jraw) * © * [(wn? = @ + j28ewn,0)/wn?] - - - }
G (U + jrw) -+ - [(wn? — o + 52010n0)/0n®] - - -}
(9.41)

G(jw) =

For small values of w all the terms inside the braces of the preceding
expression approach 1, so that
, K,
G(jw) Ga)® w=10 (9.42)
As is indicated from the preceding expression, the gain K, can be
determined from the low-frequency portion of a log-magnitude plot.
Equation (9.42) is valid for minimum- as well as non-minimum-phase
systems. All the frequency-response techniques to be discussed in this
and the next chapter are equally valid for minimum- or non-minimum-
phase systems. The techniques for evaluating K, forn = 0, 1, or 2 are
described in the following.
n = 0. When n is zero, there is no jw term in G(jw). Thus, Eq. (9.42)
becomes
G(jw) = Ko w=20 (9.43)

A typical log-magnitude plot for this case is shown in Fig. 9.11a. For
small values of w the low-frequency asymptote has a constant value
G(jw) = K,.

n = 1. For small values of w and for n equal to 1, it follows from
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Eq. (9.42) that
.. Ky _
Qo) = 3; w=0 (9.44)

The logarithm of the magnitude of Q(jw) is
log |G(jw)| = log K; — log o w=20 (9.45)

From Eq. (9.45), it follows that, as w; changes by a factor of 10, then
log |G(jw)| changes by —1. Thus for w = 0 the slope of the curve of

1T

v

1 >

w=K, w w=1l w=JK, w
b) (c)

F1e. 9.11. log-magnitude plot. (a) n = 0; ) n=1;(c) n =2
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log |G(jw)| versus' w is —1 log unit/decade. A typical log-magnitude
diagram for the case in which n = 1 is shown in Fig. 9.11b. Tt is to be
noted that the low-frequency slope of —1 log unit/decade or its extension
intersects the horizontal axis log |G(jw)| = 0 at the point where w = K.
This fact follows directly from Eq. (9.45) by noting that, -when
log |@(jw)| = 0, then log w = log K, or simply & = K;. In addition,
for w equal to 1, Eq. (9.45) becomes log |G(jw)| = log K. Thus, as is
shown in Fig. 9.11b, a vertical line through w = 1 intersects the low-fre-
quency asymptote or its extension at the value log K,.

n = 2. The low-frequency equation for this case is.
Q(jw) = K. _ _ %{- (9.46)

> (jw)?




'FREQUENCY-RESPONSE METHODS 165

The logarithm of the magnitude of G(jw) is
log |G(jw)| = log K, — 2 log o (9.47)

A typical log-magnitude diagram for n = 2 is illustrated in Fig. 9.11c.
The slope at low frequencies is —2 log units/decade. From Eq. 9.47), it
follows that, when log |@(jw)| = 0, then log w = 14 log K; or w = v/K..
Thus, the low-frequency asymptote or its extension intersects the horizon-
tal line log |G(jw)| = 0 at the frequency w = 4/K,. When w = 1, then
Eq. (9.47) becomes log |G(jw)| = log K;. Thus, a vertical line through
w = 1 intersects the low-frequency asymptote or its extension at log K.

9.6. EquivalentUnity-feedback System. Much simplification isafforded
in the application of frequency-response methods to systems having unity
feedback. A control system having

feedback elements H(p) can usually be  r(t) + e(t)
. . G(p) >

represented by an equivalent unity-feed- >

back system, as is illustrated in Fig. 9.12.

For the case in which H(p) is a constant,
the equivalent unity-feedback system is
readily obtained by moving the constant H(p) to the input side of the main
loop. The systems represented by Figs. 3.17, 4.7b, and 4.11 have a con-
stant term H(p) = C, in the feedback path. Moving C, to the input side
of the main loop yields the unity-feedback systems shown in Fig. 9.13a, b,
and ¢, respectively.

To obtain the equivalent unity-feedback system when H (p) is not a
constant, first write H(p) in the form H(p) = C[1 + Hi(p)]. The
constant C'may now be taken out of the feedback path, and the remaining
term 1 + H,(p) may be represented as shown in Fig. 9.14 by two separate
paths. The design of such systems in which there is an inner, or minor,
feedback path is often facilitated by the use of inverse polar plots, as is
discussed in Sec. 10-5.

In obtaining the equivalent unity-feedback system, only constant terms
are to be taken outside the main loop. The fact that r(f) is equal to some
constant times the command signal does not affect the basic dynamic
behavior of the system.

System Type. When a system is represented in its equivalent unity-
feedback form, the value of # in G(s) as indicated by Eq. (9.40) has a
predominant effect upon the behavior of the system. When n = 0, the
system is designated as a type 0 system. A type 1 system is one for
which n = 1, a type 2 system is one for which n = 2, ete.

A type 0 system results when there is no integration as in a propor-
tional-type control. For an integral-type control in which there is one
integrator in the feedforward elements, 7 is equal to 1. A type 2 system
has two integrations in the feedforward elements, ete.

Fia. 9.12. Unity-feedback system.
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F16. 9.13. Equivalent unity-feedback systems when H(p) is a constant.
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Fia. 9.14. Equivalent unity-feedback system when H(p) is not a constant.

9.6. Polar Plots. Vector loci or polar plots are better suited for the
solution of certain control problems than are log-magnitude diagrams, and
viceversa. Asislater explained, other methodsof representing frequency-
response information are the log-modulus, or Nichols, plot and the inverse
polar plot. A control engineer must be familiar with all these means of
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F1a. 9.15. Common polar plots.

plotting frequency-response data so that he can select the method which is
best suited to his particular problem.

The polar plots for a number of commonly encountered functions are
shown in Fig. 9.15.

Polar plots may often be roughly sketched by knowing the location at
low frequencies (w — 0) and at high frequencies (w — ).

For example, in Fig. 9.15a A e - Q %0°
1 )
1+ jrwlo=ot
1 1

_ e = (0 +)e° (9.48)

W=+ TW o=+

w= -+ ~j7'_w

1 4+ jre
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Thus, the locus of Fig. 9.15a begins at the 41 point on the positive real
axis, and as w approaches =, the locus approaches 0 along the —90° axis.
The low- and high-frequency values for Fig. 9.15b are

5= e -

— = .]_'. e—j90° = (+ w)e—j90°
e 7 =0t ) (9.49)
= == e = (0 +)e~%
Jw lo=+w w w=Fw ( +)
For Fig. 9.15¢
1 -1
w=04

1 — (w/wa)® + 728 (w0/wa)
1 1

u=+;o =T (w/wn)?

— Wn 2 -
w =+ © w w=+»

= (04)e918%° (9.50)

T — (w/wn)? + 728 (@/won)

The limiting value for a function composed of multipies of the preceding
terms is equal to the product of the contribution of each term. For

example, in Fig. 9.15d - a3
’ g o) ™90
—> ___l___.._ = 1 = —3900
Jol + jro) om0+  Jwlo=o4 1+ jrolo=os+ (4 =)e™?
1 1 1 ; )
Fo 0 F 7 o be ~ G lam b S TF o fomgw — QI OH)

= (0+)e%°  (9.51)

Application of this technique will verify the results shown in Fig. 9.15¢
and f.

The low- and high-frequency locations are summarized in Table 9.1.
The reciprocal of any term in Table 9.1 is obtained by changing the sign of

TarLE 9.1
1 1 wn?
© Jo 1 4jrew | ws? — o+ 2twwa
—>
0+ ©/—-90° | 1/0° 1/0°
+w 0/—90° 0/—90° | 0/—180°

the phase angle and taking the reciprocal of the magnitude. At low
frequencies, there is a phase shift with the 1/jw term only. Thus, for a
type O system, the polar plot originates on the positive real axis, where ¢
is zero. Typical polar plots for type 0, 1, 2, and 3 systems are shown in
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Fig. 9.16. A type 1 system begins at infinity on the negative 90° axis,
a type 2 at infinity on the negative 180° axis, etc. For most systems, the
polar plot terminates at the origin when w = e,

w-O? P
Type 3
/ w=0 Real
W= oo i
J_—o\j/ axis
Type 2
Type 1 Type 0
w-O*

Fi1a. 9.16. Polar plots for type 0, 1, 2, and 3 systems.

9.7. Determining the Closed-loop Frequency Response from the
Open-loop Response. Frequency-response methods make extensive use
of the open-loop frequency response G(jw). The open-loop response is the
response that would be obtained if the feedback path were disconnected at
the comparator (i.e., opened).

For unity-feedback systems, the Aj
closed-loop frequency response ﬁ\ Real
| e(jw)/r(j) s
is related to the open-loop response by 1+G(jw) @
t_he equation Oy
. e(Go) _ _GQQw)
— Ga) ~ T+ 6Gw 52

The preceding expression has meaning o
for a stable system only. For an Fi1g. 9.17. Determination of the
re closed-loop frequency response from

_uristiable system c¢(jw)/r(jw) becomes the open-loop response.
infinite. Whether or not a system is

stable may be determined by the application of Routh’s criterion or from
the Nyquist stability criterion, which is discussed in the next chapter.
In Fig. 9.17 is shown a typical G{jw) plot. The vector from the origin to a
point on the curve is G(jw), and the vector from the point —1 + jO to the



170 AUTOMATIC CONTROL ENGINEERING

same point on this curve is 1 4+ G(jw). The ratio of these two vectors is
the closed-loop frequency response for the value of w at thatpoint. This
shows that every point on the G(jw) plane corresponds to a certain value of
¢(jw)/r(jw). The magnitude of the ratio of the amplitude of the output
sinusoid to the input is designated by the symbol M = |c(jw)/r(jw)|.

In Fig. 9.18, it is to be seen that the locus of lines of constant M are
circles on the G(jw) plane. The proof of this follows: Consider any point

AJ

M=11

Fic. 9.18. Constant-M circles.

G(jw) = z + jy in the G(jw) plane of Fig. 9.18. The closed-loop fre-
quency response is
c(jo) z +Jjy
— = : 9.53
r(jo) l1+z+75y (9.53)

The magnitude of the preceding equation is

C(jw) _ xz + y2 %
r(jo) | (1 + 2z + 2 + yz> (9.54)

M =

Squaring and cross multiplying gives
(M2 — 1) + 2zM?® + y3(M? — 1) = —M? (9.55)
Dividing by M2 — 1 and completing the square by adding M*/(M?* — 1)*
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to both sides yields

2z M? M _ M M
Y1t or - T T ar - =1 ©59
M2 2 M2
Thus, (ZIJ + m) +y? = (]W2——1)2 (957)

Equation (9.57) is the equation'of a circle as shown in Fig. 9.19 with
center at

M2
and radius
M

The closed-loop frequency response may be expressed in the form
C(jw) Mei
= = Mei> 9.60
(o) (6.60)

where M = |c(jw)/r(jw)|and a = X.e(jw)/r(jo).
The loci of lines of constant phase angle « for the closed loop response
are also circles. The circles of con-

stant o are shown in Fig. 9.20. The M2 A
centers of these circles are located at Si— 5
the point 1-M

z=-% y=1/(2N) (9.61)
where N = tan a. The radius of Real
each circle is —>

1 I M axis
— 2
> r=;x VN1 (962 M-l

9.8. Correlation between Tran-
sient and Frequency Response.
The transient response of a system can be ascertained directly from the fre-
quency response. For example, for a second-order system, the differen-
tial equation of operation is

wp2
O = FF stop T o' (9.63)

The substitution of jw for p yields the following equation for the closed-

loop frequency response of a second-order system:

F1a. 9.19. Typical M circle.

e(jw) _ wn? _ 1
r(jo)  wa? — @ + j2wwn 1 — (w/wn)? + 520 (w/wn)

(9.64)
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j
a=10° 200 3
30° 42
45°
60°
90°
= y__ Real
~~— 2 ais
—%0°
—60°
—a5°
—30°
a=-10°
—20°
Fi1a. 9.20. Constant-« circles.
The ratio of the amplitude of the output to the input is
c(jw) 1
= - = 9.65
rGa) | ~ T = /o F H@/oaie 069

The angular velocity @ = w. at which the amplitude ratio M becomes
a maximum is obtained by differentiating Eq. (9.65) with respect to w
and equating this result to zero. Performing this operation yields

wm =wnV1—-202 0<¢ <0707 (9.66)

where wn is the angular velocity at which the maximum value M,, occurs.
The substitution of w., from Eq. (9.66) for « in Eq. (9.65) gives

1
. Mp=
—> 2%V1-¢

The preceding result has significance only for 0 < ¢ < 0.707, in which

0 <¢<0.707 9.67)
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case M, > 1. InFig. 9.21isshown
a plot of corresponding values of
M,, and ¢. ,

*  As previously discussed, the zeros
of the characteristic function which
are located nearest the imaginary
axis have a predominant effect upon
the transient behavior of higher-
order systems. Thus, the transient
behavior of a higher-order system
for which M,, > 1 (the value of M,
may be obtained from a polar plot for
the system) may be approzimated by
a second-order system whose damp-
ing ratio ¢ as obtained from Fig. 9.21
corresponds to the value of M, for

M,]

1

0 02 04 0.6 $

Fia. 9.21. M,, versus ¢ for a second-
order system.

the system. For the case in which M, < 1, the tranpient behavior is
better approzimated by a first-order system, as is soon to be discussed.
Illustrative Example. In Fig. 9.22 is shown the polar plot for a third-
order system with unity feedback in which G(s) = 80/[s(s* + 10s + 26)]1.
By superimposing the polar plot for G(jw) on a family of M circles as
shown in Fig. 9.22, it is found that M, = 1.6. From Fig. 9.21, it fol--
lows that, for M,, = 1.6, the corresponding value of { is 0.33. Thus, the
transient behavior of this system may be approximated by a second-order

gystem whose damping ratio ¢ is 0.33.

hJj

Real

0 axis

F1a, 9.22. Determination of My, from polar plot.
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The horizontal coordinate in Figs. 6.7 and 6.12 is w.t, and thus, for a
second-order system, the value of w, determines the speed of response.
For a given damping ratio, it follows from Eq. (9.66) that w. is propor-
tional to w,. Therefore, the value of w. may be used to provide a
measure or indication of the speed of response.

When M, is less than 1 the transient response can be approximated
by an equivalent Tirst-order system. 1t is to be noticed from Fig. 6.7
that, when ¢ > 0707, there is no overshoot of the response to a step
change in the input. This is similar to the type of response that is
obtained from a first-order system. The correlation which exists between
the frequency and transient response of a first-order system is obtained

as follows: A first-order system is

Ay

Circle of unit one for which
radius ( ) 1
c(Jw) _
r(jw) 1+ jro (9.68)
- Real  Writing the preceding in terms of
w={ + oco)-A axis G(jw) giVeS
o) GGw) _ 1
; r(jw) 14 G{w) 14 jre
=T Solving for G(jw) yields
. 1
Q(jw) = Fra (9.69)

Fig. 9.23. Polar plot for G(jw) = —1- The polar plot for G(jw) = 1/frw
™ is shown in Fig. 9.23. When the

magnitude of G(jw) is 1, then w = 1/r. For a first-order system, the
value of w at which G(jw) has a length of 1 is the reciprocal of the time
constant r = 1/w. Thus, for systems in which M,, < 1, an indication
of the equivalent time constant 7 may be obtamed by tmking the
remprocal ol the angular velocity « at_which the nmemtude—of G (j6)
18 I. —This valtue of 7 completely determines the response for a first-order
system. The preceding techniques for estimating the transient behavior
are adequate for most design purposes. In Appendix IV is shown an
exact method for obtaining the transient response from the frequency
resp

9.9 Determining the Gain K so that a System Will Have a Desired
Value of M,. In Fig. 9.24 is shown a typical polar plot of G(jw). If the
gain K of the original function is doubled, the value of G(jw) is doubled
at every poi As shown in Fig. 9.24, it 18 nof necessary to change the
shape of the polar plot, but merely to change the scale by multiplying -
the old scale by the factor 2. Values of this new scale are showm im
parentheses. D
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In the preceding section, it was shown that, when M., is greater than
1, the transient behavior may be approximated by a second-order system
in which ¢ is obtained from Fig. 9.21. For M,, less than 1, the transient
* behavior is not governed by the value of M,.. It is now shown how the
gain K can be adjusted so that the
polar plot G(jw) will be tangent to j
any desired M,, > 1 circle. This, 054(1)
in effect, is determining the gain K
so that the system will have a (=2) (-1) (1) (2) Real
desired M.,.. -1 -05 05 1 axis

From Fig. 9.25, the line drawn
from the origin, tangent to the —05+(-1)
desired M, circle at the point P,
has an included angle of ¥. The —1l(-2)
value of sin ¢ is
sin ¢ = |M,,./(M,,.2 - 1)‘ — _i_

|Ma?/(1 — M ol M. F1a. 9.24. Typical polar plot.
(9.70)

A characteristic feature of the point of tangency P is that a line drawn
from the point P perpendicular to the negative real axis intersects this
axis at the —1 point. This characteristic may be proved from the

geometry of Fig. 9.25.

Gjw)

\j

Regl
axis

Fia. 9.25. Tangent to a M circle.

The procedure for determining the gain K so that G(jw) will have a.
desired value of M,, is as follows:

1. Draw the polar plot for G(jw)/K.

2. Draw the tangent line to the desired M, circle [Eq. (9.70)].

3. Draw the circle with center on the negative real axis that is tangent
to both the G(jw)/K plot and the tangent line, as is shown in Fig. 9.26.

=

<
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4. Erect the perpendicular to the negative real axis from point P, the
point of tangency of this circle and the tangent line. This perpendicular
intersects the negative real axis at a value —4 + j0 = —A4.

5. In order that the circle drawn in step 3 correspond to the desired
M,, circle, this point should be —1 + jO = —1 rather than —A. The
desired gain is that value of K which changes the scale so that this does
become the —1 point; thus K(—A4) = —1or K = 1/A.

As is illustrated in Fig. 9.26, the perpendicular drawn from point P
to the negative real axis intersects the negative real axis at a value of

A}j
—A—»
0.05+ (1)
(-2) (-1 (1) Real
~0.10 \o;.os 005 axis
|
|
P
—005+} (~1)
—0.10+(~2)

Fig. 9.26. Determination of K to yield a desired M .

—0.05. However, this value should be —1. Multiplication of the scale
by a factor of 20 (that is, —0.05 X 20 = —1), as is shown in Fig. 9.26
by the numbers in parentheses, converts this point to the —1 point.
Thus, the original function should have a gain of 20 in order that all
the necessary conditions be satisfied.

Tllustrative Example. Let it be desired to determine the gain K such
that a unity-feedback system for which G(s) = K/[s(1 + 0.1s)] will have
a maximum value M,, = 14,

SoLUTION. First construct the polar plot for

G(jo) _ 1
K Jo(1 + 0.1jw)

as is shown in Fig. 9.27. The value of ¢ is obtained from Eq. (9.70).

¥ = sin—1 -1 = gin—1-L = 45.6° ©.71)
M, 1.4

By trial and error, the circle which is tangent to both the G(jw)/K plot and
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—4 = —0.067, or A = 0.067.

also to the line drawn at the angle ¢ = 45.6° is determined. The perpen-
= dicular drawn from point P intersects the negative real axis at the point

Thus, the gain is K = 1/ 0.067 = 16.
9.10. log-modulus, or Nichols,

1/ Plots. Inaddition to log-magnitude
—\__ —0067 N 0.10 and polar plots, another method
of representing frequency-response
Joos A
1_
' . 1 Real }
~015 010 005 axis =1
| |
|
{-00s }
|
|
|
+4-0.10 i :
Gliw) ‘ TR A
K -180° -135° _—90’ [
F1a. 9.27. Polar plot for Fic. 9.28. log-modulus plot for
GGw) _ 1 1
K Jo(l 4 0.1jw) Jo(1 + 0.1jw)
’ 1.0 T
3 1.1 ”1 0
i 0.8
ﬁ I -
06 4T N / T~
s / N\
- o2 RS / v N
; 3 HAL | — \
o o0 VAVAZaEs
3 g > // e et 0.5
& BB e\ \
E ‘ — ol \ 102
- os A —T I\ —40° \
- nw A N -70° \ |
~0.6 \ \_13('0 \_ 00° \
\-160° \ X 0.2
\ A \ \
-0.8 3
| \ \
| \ \ \ \

-1.0
. -180° -160° -140° -120°

-100° -80° —60° -40° -20° 0°
4 G(jw) )

F1a. 9.29. log-modulus reﬁiesentatioxi for lines of constant M and lines of constant a.
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information is log-modulus, or Nichols, plots.! The log-modulus curve
is a plot of log |G(jw)| versus X G(jw) for various values of angular
velocity w. The log-modulus curve for G(jw)/K = 1/[jw(l + 0.1jw)]
is constructed in Fig. 9.28. From the equation for G(jw)/K it is seen that,
for a given angular velocity w, the corresponding phase angle and ampli-
tude ratio can be obtained. These values determine one point on the log-
modulus plot. By repeating this process for other values of w, the log-
modulus graph of G(jw)/K shown in Fig. 9.28 is obtained. Every point

I or log |G (jw)|
L

oFr——————— e (-

3l -2
Sl
g
-3
-
1 L 1 1 I -
—180° —135° —-90°
[}

Fia. 9.30. Use of log-modulus plot to yield a desired M.

on the log-modulus graph corresponds to a certain value of G(jw). By
using a procedure similar to that for obtaining M circles and « circles, loci
for the closed-loop response may be obtained as shown in Fig. 9.29.

It is now shown how the log-modulus techniques may be used to deter-
mine gain K so that a system will have a desired value of M,. Thisis the
design problem which was just treated by polar-plot techniques. In Fig.
9.30 is shown the log-modulus plot for the function G(jw)/K of Fig. 9.28
and also the curve for the desired M,, = 1.4. Changing the gain K does
not affect the phase angle but merely moves the log-modulus curve ver-
tically up for K greater than 1 and down for K less than 1. In Fig. 9.30,
it is to be seen that the original function represented by the solid line
must be moved up so that it will be tangent to the desired M, contour.
Because log K = 1.2, it follows that the required gain is K = 16.

LH. M. James, N. B. Nichols, and R. S, Phillips, “Theory of Servomechanisms,”
McGraw-Hill Book Company, Inc., New York, 1947.




CHAPTER 10

IMPROVING SYSTEM PERFORMANCE

10.1. Introduction. Additional insight into the correlation between the
shape of a polar plot and the dynamic behavior of a system is obtained by
the Nyquist stability criterion.! For many design problems, it is not
only necessary to change the gain K as discussed in the preceding chapter,
but it is also necessary to reshape the polar plot. In this chapter, the
significance of the Nyquist stability criterion is first presented, and then
it is shown how system performance may be improved by reshaping the
polar plot. ,

10.2. Nyquist Stability Criterion. The Nyquist criterion makes
extensive use of conformal mapping. The process of conformal mapping
is illustrated as follows: Consider the function

. 14+ GEH(E) =2 —25+2=(—1—7)E—1+7 (10.1)

For each value of s, there is a corresponding value of the function 1 +
G(s)H(s). Tt is necessary to specify the range of values of s so that the
corresponding values of the function can be computed. For instance,
suppose that it is desired to let s follow the path of the circumference of
the circle shown in Fig. 10.1a. Because the center of the circle is the
point 2 + j0 and the radius is 2, then

s=2+28 S53 ’:‘,'Ef\ (10.2)

where B varies from 0 to —90 to —180°, etc., as s traverses the circle
in a clockwise direction. It follows from Eq. (10.1) that the zeros of
1 4+ G(s)H(s) [that is, values of s for which 1 + G(s)H(s) = 0] are located
inside the circle in Fig. 10.1a. Substitution of s from Eq. (10.2) into Eq.
(10.1) gives 1 + G(s)H(s) as a function of 8, that is,

14+ Gs)H(s) = 2 + 4e# | 428 (10.3)

A plot of the corresponding map of 1 + G(s)H(s) is shown in Fig. 10.1b.
It is important to notice that there are two clockwise encirclements of
the origin of the 1 + G(s)H(s) plot shown in Fig. 10.15. In general, it
can be shown that there is one encirclement of the origin for each zero of

—— ————

1 H. Nyquist, Regeneration Theory, Bell System Tech. J., vol. 11, pp. 126-147, 1932.
179 .
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1 4 G(s)H(s) which Ii ithin the path of values for s, These encircle-
ents are 1n the same sense as the motion aroun th in the s plane,
in this case, clockwise. For each pole of 1 + G(s)H(s) located within

the path of values for s, thefé i§ one enc ment of the origin in the

——

5  Real

B=0°"  axis

Real
12 axis

1+G(s) H(s) plane

(b)
Fie. 10.1. (a) Path of values for s; (b) map for 1 + G(s)H(s).

0pPosii . By a pole is meant a value of s which makes 1 4+ G‘(s)H (s) -
infinite. For example, consider the function.
- 1 1

14+ G(s)H(s) =~

£ —2s+2 —-1-HN@E-1+47 (10.4)
The preceding function has two poles, s =1 + jand s = 1 — j.

The following general equation may be formulated,
N=Z-P (10.5) <

2 =N4P
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where P = no. of poles of 1 + G(s) H(s) located inside path of valuesm

Z = no. of zeros of 1 4+ G(s)H(s) located inside path of values for s

= no. of encirclements of origin of 1 + G(s)H(s) plane

When the net number of encirclements & is in the same sense as motion
around the path of the s contour, an excess of zeros Z is indicated. The
opposite sense signifies an excess of poles P. From Eq. (10.5), it follows
that, when N is in the same sense, N is a positive number. Similarly,
when N is in the opposite sense, N is a negative number.! Generally,
the path of values for s is traversed in a
clockwise direction. Thus, for a net
number of clockwise encirclements N is

j

positive, and there is an excess of zeros. R Y s;rr:ﬁgiiﬁgle
For a net number of counterclockwise
encirclements N is negative, and there is ' S
an excess of poles. ®
For control work, the path of values B -\ Real

for s is usually taken as shown in Fig. axis

10.2. This contour is seen to proceed
from the origin up the imaginary axis
to infinity, then an infinite semicircle
(R — «) sweeps around to the bottom
of the imaginary axis, whence it returns
to the origin. This contour, in effect, Fie. 10.2. Path of values for s,
encloses the entire right half plane. K;hffcﬁlagzdoses the entire right
As is discussed in Chap. 6, a system is |04 <

basically unstable if any zeros of the characterlstlc equation are located in

the right half plane. By noting that

_ NewNrw _ DewyDuwy + NewNaw

1+ G@HE =1+ D¢wDuwy DewyDaew (106)
it is apparent that the zeros of 1 + G(s)H(s) are also the zeros of the
characteristic equation. From Eq. (10.6), it is also to be noted that
the poles of 1 + G(s)H(s) are the zeros of DgwyDr¢. Thus, by letting s
assume the values indicated along the contour of Fig. 10.2, it follows that

Z=N+P (10.7) e

where Z = no. of zeros of characteristic equation [i.e., zeros of
1 4 G(s)H(s)] in right half plane
P = no. of zeros of DewDa [that is, poles of 1 + G(s)H(s)] in
right half plane
N = net no. of encirclements of origin of 1 4 G(s)H(s) map
1 Often Eq. (10.5) is written in the form N = P — Z. When this form is used, N
is negative for a net number of encirclements in the same sense and is positive for the
opposite sense.
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. This technique is now illustrated for a third-order system for which
10 _ 10

s(s?+ 58 +4) s(s+4)(s+1)

Because G(s)H(s) is usually obtained in factored form, it is more con-
venient to construct the map for G(s)H(s) rather than 1 4 G(s)H(s).
The effect of adding +1 to each point of the G(s)H(s) map to obtain the
1 + G(s)H(s) map is accomplished simply by adding +1 to the scale of

G(3)H(s) =

(10.8)

0-)——_
A

plane

(a)

~~ Infinite
T ~ semicircle
/ o
/ AN
/ \\
b Y
\
\
\
\
\
\
\
(-1 (3) \
-2 3 G4 !
1
!
/
/l
*
/
)’/ ?./
/ (0+) 4 ,
/
0-
// (0=) r{\-Radius €
G(s) H(s) plane s
v P
Use horizontal scale -
in parentheses to (°+X—’
obtain 1+ G(s) H(s)

(b) s plane

Fi1G. 10.3. (a) Map for G(s)H(s), in which the origin is not enclosed in the path of
values for s; (b) path of values for s, excluding the origin.

the real axis, as is shown by the numbers in parentheses in Fig. 10.3a.
The —1 point of the G(s)H(s) map is seen to correspond to the origin
of the 1 4+ G(s)H(s) map. Thus, N is equal to the net number of
encirclements of the —1 point of the G(s)H(s) plot,.

For values of s along the positive imaginary axis, the map for G(s)H (s)
is the polar plot G(jw)H (jw), where w takes on values from 0 to . The
map of G(s)H(s) for this region begins at — « on the negative imaginary
axis for @ = 0+, and then goes to the origin for w = + «, asisshownin |
Fig. 10.3a. For values of s along the infinite semicircle of Fig. 10.3b,
the map of G(s)H(s) is a point at the origin. This is verified by sub-
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stituting s = Re” into Eq. (10.8) and noting that, as R becomes infinite,
G(s)H(s) approaches zero. For values of s along the negative imaginary
axis of Fig. 10.3b, then G(s)H(s) is equal to G(—jw)H(—jw), which is the
complex conjugate of G(jw)H(jw). Thus, as shown in Fig. 10.3a, the
map for s along the negative imaginary axis is the mirror image of the
map for s along the positive imaginary axis.

As is illustrated by this example, a unique problem exists when a pole
of G(s)H(s) (that is, s = 0) lies on the path of assumed values for s. In
general, when G(s)H(s) has a pole along the imaginary axis, the map
becomes indeterminant when s assumes the value at the pole. To avoid
this situation, a small semicircle is constructed around the pole, as is
shown in Fig. 10.3b. As is soon to be demonstrated, it makes no dif-
ference in the result if the semicircle is drawn so as to exclude the pole as
shown in Fig. 10.3b or if it is drawn to include the pole as shown in
Fig. 10.4b.

For the case shown in Fig. 10.3b, in which the radius of the small
semicircle is ¢ (¢ < 1) and B8 varies from —90 to 0 to +90° in going
from s = j(0—) to j(0+), substitution of s = e¢? into Eq. (10.8) gives

10 _ 10
€' + bele?® + dee®  4dee®

G(s)H(s) = 0 ¢ (10.9)
In the preceding expression, advantage is taken of the fact, that for small
values of ¢, then ee? 3> €%/ > e%¢%, 5o that terms with higher powers of
¢ become negligible. For 8 going from —90 to 0 to +90°, Eq. (10.9)
describes an infinite semicircle as shown in Fig. 10.3a. Application of the
Nyquist criterion to determine Z is accomplished as follows: Because
none of the poles of 1 + G(s)H(s) (that is, s = 0, —1, —4) is inside the
contour of the values of s shown in Fig. 10.3b, then P is zero. The value
of N is also zero because there are no encirclements of the —1 point of
the G(s)H(s) map and therefore Z = N + P = 0. Thus, there are no
zeros of the characteristic equation in the right half plane.

As was previously mentioned, it would make no difference if the path
for values of s had been chosen to include the pole of 1 4+ G(s)H(s), as is
shown in Fig. 10.4b. For this case, the equation for the very small
semicircle is ee’, where 8 varies from —90 to —180 to —270° as s goes
from j(0—) to j(0+). For this region, Eq. (10.8) becomes

10 . _ 10
€97 1 5e2ei®® | dee®  deeh®

G(s)H(s) = = e #®  (10.10)
The values of 8 to be used in Eq. (10.10) yield the infinite semicircle
shown in Fig. 10.4a¢. There is one net counterclockwise encirclement of-
the —1 point so that N is —1. Because the pole at 8 = 0 is included
within the path of values of s as shown in Fig. 10.4b, the value of P is 1,
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so that Z= N+ P = —1+4+1=0. This is the result that was
previously obtained by excluding the origin.

If the polar plot for G(s)H(s) were to go through the —1 point, this
would indicate that zeros of the characteristic equation are located on the
imaginary axis. For example, from Fig. 10.3q, it is to be noticed that
the polar plot crosses the negative real axis at a value of —0.5. If the

,—--ﬂ(o‘)

- V—
e 77
e / G (s) H(s) plane
'/ // Use horizontal scale in
/ parentheses to obtain
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\
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N
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~
\\\ e/ -
(a) ~—To+) . (8)

Fi16. 10.4. (a) Map for G(s)H(s), in which the origin is enclosed in the path of values
for s; (b) path of values for s, including the origin.

gain which is 10 in- Eq. (10.8) were doubled, the polar plot would go
through the —1 point. For this case, the characteristic equation is

DgwyDruy + Ne@yNau = s(s? + 5s + 4) + 20
(s + 5)(s2 4 4) (10.11)

and the two zeros s = £32 are seen to lie on the imaginary axis.

The open-loop frequency response G(jw)H(jw) can be determined
experimentally only when the open loop is stable. For a stable open
loop, all the zeros of DgDp lie in the left half plane. Because the zeros of |
DgDpy are the poles of 1 4 G(s)H(s), for this case there are ne peles in
the right half plane and P = 0. When the open loop is stable, the

e —
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Nyquist stability criterion becomes

Z=N (10.12)
‘__,‘-

For a stable system (i.e., stable closed loop, or Z = 0), there can be no
net encirclements N of the —1 point.

It is well to note that the closed loop may be stable even though the
open loop is unstable, and vice versa. For an unstable open loop, the

IV
Udrgit -1
radius I7 x, —
o Real

\ -1 " axis
4

.—/
G (jw) H(jw)

Fic. 10.5. Determination of gain margin and phase margin from the polar plot.

open-loop response may be calculated from a known closed-loop response
by solving Eq. (9.52) for G(jw), thus,

Ly c(jw)/r(jw)
FUe) = 1= c(jw) /r(a) (10-13)
In applying frequency-response methods, one always works with the
open-loop response.

10.3. Gain Margin and Phase Margin. From the preceding discus-
sion, the — 1'point of the G(s)H(s) map was seen to have great significance
with regard to the stability of a system. In Fig. 10.5 is shown a typical
G(jw)H(jw) plot in the vicinity of the —1 point. If the gain were
multiplied by an amount Ky, called the gain margin, the G(jw)H (jw) plot
would go through the —1 point. Thus, the gain margin is an indication
of how much the gain can be increased before the curve goes through the
critical point. In Fig. 10.6 is shown the log-modulus plot corresponding
to Fig. 10.5. Because log 1 = 0, the —1 <+ jO point on the-log-modulus
plot is defined by the ordinate log |[G(jw)H(jw)| = 0 and abscissa
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¢ = —180°. From Fig. 10.6, the vertical distance that the G(jw)H (jw)
plot may be raised before it goes through the —1 point is log K.

The angle v in Fig. 10.5 is the angle measured from the negative real

' axis to where the polar plot crosses

a circle of unit radius. If the angle

v is zero, the polar plot goes through

3 — Y the —1 point. The angle v, called
= _*_0 the phase margin, is thus seen to be
E log K, : another indication or measure of the
s L G(jw) H(jw) closeness of the polar plot to the
% critical point. The value of the

- phase margin may be obtained from

% | | | a log-modulus plot as follows:

-180° —160° -140° -120° The horizontal line in Fig. 10.6 of

¢ log |G(jw)H (jw)| = log 1 = O corre-
Fie. 10.6. Determination of gain margin sponds to the unit circle of Fig, 10.5.
and phase margin from the log-modulus The angle ¥ between the point
plot. where this horizontal line inter-
sects the G(jw) H(jw) plot and the value ¢ = —180°is the phase margin v.
When the gain margin is less than 1, the gain must be decreased to
make the curve pass through the —1 point. An unstable system is
indicated when the gain margin is less than one.

A log

G(jw)

/
7
=X f . kG ()
log K'=-15 -

+1 T //

-1

//
Vv
V4

| I | IR IS N [ IS AT TR CE I |

1
-220° —-200° -180° -160° -140° -120° -100° -80°
¢
Fia. 10.7. log-modulus plot for G(jw).

y

Illustrative Example 1. The log-modulus plot of G(jw) for a unity-
feedback system is shown in Fig. 10.7. What is the value of the gain
margin and the phase margin for this system? By what factor K’ should -
the gain of the system be changed so that M, will be 1.4? What is the
new value for the gain margin and the phase margin?
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soLUTION. From the G(jw) plot for the original system, it follows
that log Ky = —0.5, or K»r = 0.316, and v = 180° — 198° = —18°. It
is to be noted that a negative phase margin indicates an unstable system,
as does a gain margin of less than 1.

The factor K’ is obtained by moving the G(jw) locus straight down
until the new locus K'G(jw) is tangent to the desired M,, = 1.4 contour.
From Fig. 10.7, it follows that

log K" = —1.5 or K’ = 0.0316

The new gain marginislog Ky = 1,
or Ky = 10, and the new phase
margin is ¥ = 180° — 135° = 45°,

ITllustrative Example 2. The log-
magnitude plots of G(jw) for a
unity-feedback system are shown
in Fig. 10.8. What is the value of
the gain margin and the phase
margin? By what factor should
the gain of the system be changed
to obtain a gain margin of 2?

SOLUTION. On a log-magnitude -270°
plot, the effect &6f increasing the gain
is"To~shift the entire_plot o Gljo).
|G(y0yVertically upward. Simi-
larly, decreasing the gain shiftsitdown. The phase angle is unaffected bya
change in gain. The gain margin is the factor by which the gat be
* inereased 50 that |G(jw)| will equal 1 when ¢ is 180°. From Fig. 10.8, at
¢ = 180° the value of w is 10, and log |G(jw)| is —2, or G(jw) = 0.01.
Thus, the gain margin is 100. The phase margin y is equal to
180° - 93° = 87°, where —93° is % G(jw) when |G(jw)]| is 1, which occurs
at w = 0.1.

Because the original gain margin is 100, increasing the gain by a factor
of 50 would yield a gain margin of 2.

10.4. Series Compensation. In Sec. 9.9, it is shown how the gain K
is selected in order to obtain a desired value of M,,. A change in the gain
K in effect changes the scale factor of the polar plot but does not change
the basic shape of the plot. In the design of control systems, it is often
necessary to change the shape of the polar plot in order to achieve the
desired dynamic performance. A common means of doing this is to
~ insert elements in series with the feedforward portion of the control.
- This method of compensating the performance of the control system is

log!Gijw)i

~180°

2 Gljw)

- called series compensation,

F1a. 10.8. log-magnitude diagrams for
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In general, the frequency-response characteristics of a component
which is used to provide series compensation are such that the output of
the component either lags or leads the input. In some cases, it is
advantageous to use a component in which the output lags the input for
a certain range of frequencies and then the output leads the input for
other frequencies. This is known as lag-lead series compensation. A
component which is used to provide series compensation is sometimes

"referred to as a series equalizer.

Phase Lag. The output lags the input for any component which has a
transter function of the form

Es) _ Y(s) _ 1471
E.(s)  X(s) 1+ms

The frequency response for the preceding transfer function is

1> T2 (10.14)

E,(jw) _ Y(jw) _ 1+ jrow
E.(jo) X@w) 14 jrwo

TL> T2 (10.15)

In Fig. 10.9 are shown both an electrical and a mechanical component in
which the output lags the input, as is described by Eq. (10.15). The

Ry x]f

] AV Ky Es) _1+ms Y@ _1+ms

R Ein(s) 1+ 78 X(s) 1478

E i g 7 l c, 12 = RsCs s = I%
in 0 .

c, 71 = (Ri+R:)C; S K + K"r
T K =RC: + 7 ! K, 2

74

Fia. 10.9. An electrical and a mechanical component used to obtain phase lag.

construction of the log-magnitude plot for Eq. (10.15) for the case in
which 7, = 71/10 is illustrated in Fig. 10.10. For the term 1/(1 + jriw)
the break frequency occurs at « = 1/, and for the numerator 1 + jrw
the break frequency occurs at w = 1/72 = 10/7;. The addition of the log-
magnitude diagram for the numerator to that for the denominator yields
the resulting diagram for (1 + jraw)/(1 + jrw).

The resulting diagrams for three typical cases in which 7, = 71/2,
72 = 71/10, and 72 = 71/ © = 0 are shown in Fig. 10.11. The amount of
phase lag which is introduced depends upon the spread between the time
constants r; and ;. Also, the greater the phase lag introduced, the less
will be the ratio |(1 + jraw)/(1 + jriw)| at higher frequencies,
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F1a. 10.10. Construction of the log-magnitude diagram for (1 + Jrew) /(1 + jrw), in
which T2 = 71/10.
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Fia. 10.11. log-magnitude diagrams for (1 + jrsw)/(1 + jrw), in which r = T1/2,
73 =7/10,and 7y = 7,/ 0 = (.
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The use of a phase-lag component placed in series with the feedforward
portion of a control system to improve stability is now illustrated. In
Fig. 10.12a, the dashed curve is the frequency response of an uncom-
pensated control system for which the transfer function is G(s) as shown

/ Expanded scale /

: 1 L.
=107 1
rjo) &+ 30 c(jw)
(1+05jw) (1+jw) (1+10jw) -
(¢)
Compensating
elements Original system
r(o) + 142jw . 30 ¢ (jw)
4 14+20jw - (1405jw) (1+jw) (1+10jw) o
G, (jo) G(jw)

(d)
‘ Fia. 10.12. Use of phase lag to reshape a polar plot.
in Fig. 10.12¢c. This control is one which would inherently be unstable.
The addition of series compensation G.(s) is shown in Fig. 10.12d.

This reshapes the high-frequency portion of the polar plot as is shown by )
the solid-line curves of Fig. 10.12a and b. The resultant system has good
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dynamic response. From the expanded view of the polar plot in Fig.
10.12b, it is to be noted that the effect of lag compensation is to shorten a
typical vector such as that for w = 0.5 and also to rotate it in a clockwise
direction. The shortening is due to the attenuation. = By attenuation is

10 1 <
8  os| M
4l o6} G, (jw) G(jw) \\
04 N
T 02} \

Magnitude

5

T T 1

log magnitude

o

T 1 I

I
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I

/

/
/
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o
o
)
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01 -1
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{ 1 [N -
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K4
(=4
s
@
=
&
=270°

F16. 10.13. log-magnitude diagrams for system which is compensated by inserting
a phase-lag component.

meant multiplication by a factor less than 1. The attenuation caused
by use of lag compensation can be seen from Fig. 10.11. The greater the
spread in time constants 7, and r,, the more pronounced is the attenuation
which occurs at higher frequencies. Series lag compensation has little
effect'on the low-frequency portion of the curve. By reshaping the polar
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plot, it has been possible to achieve good dynamic performance without
changing the value of the gain K. Although it would have been possible
to make this system stable by decreasing the gain K only, errors caused
by friction, hysteresis, backlash, etc., tend to predominate as the gain is
decreased ; thus, in general, the higher the value of K, the mote accurate
will be the control system.

Phase-lag compensation is also used to perm1t increasing the value of
the gain K. For example, if a system initially has a satisfactory value of
M., the addition of lag compensation will attenuate the high-frequency

I I

R % i by
E;, R, E, K,
| | Wi

7,
E,(s) _mnl+ns Y(8) 71 +ms8

Ein(s) 711+ 78 X(s) m1l+47s

T = R101 T = g-l
1
Rz - Cl
" E+RP "Ik
R, -_ K
R+ R, K, + K,

F1a. 10.14. An electrical and a mechanical component used to obtain phase lead.

portion of the plot. Thus, the gain K must now be increased so that this
compensated polar plot will be tangent to the original M,, circle.

In Fig. 10.13 are shown the log-magnitude diagrams corresponding to
the polar plot of Fig. 10.12. In general, log-magnitude diagrams are
better_suited for problems in whicl Tt 5" desired to have a,_cortain pain

margin or phase margin. Polar plots are usually employed When it is
desiredto mve ac®rtain value of M,,.

Prasé Lead. In Fig. 10.14 are shown both an electrical and & mecham-

cal component which have the general phase-lead characteristi¢ given by

Ei(s) _ Y(s) _712l+ 7
E.(s) X(8) 711+ 7s8 TL> T2 (10.16)
E’o(jw) = Y(]w) — T2 1+ j‘rlw
Eu(jo)  X(jo) 711+ jrw

In using phase-lead compensation, additional amplification equal to
71/72 must be provided to maintain the original system gain. The con-
struction of the log-magnitude diagram for (1 + jriw)/(1 4+ jriw) for the
case where 7 = 7;/10 is shown in Fig. 10.15. The break frequency

or Ty > T (10.17)
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Fia. 10.15. Construction of the log-magnitude diagram for (1 + jriw)/(1 + jrsw), in
which 73 = #,/10.
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for the numerator occurs at w = 1/7; and for the denominator at

= 1/7; = 10/r,. Adding the diagram for the numerator to that for
the denominator yields the resultant diagram for phase lead. Log-
magnitude diagrams for (1 + jriw)/(1 + jraw) whenry = 71/2, 75 = 7,/10,
and 7, = 7,/ = 0 are shown in Fig. 10.16.

In Fig. 10.17a is shown the application of lead compensation to
stabilize the basic system G(s) which was just discussed in relation to the
use of lag compensation. From the expanded secale of Fig. 10.17b, it is to

‘P Expanded scale Y
A ooz
- \ P . Real
-2, -1 1 axis
//
/ w=2
/
/
/
G lw)
(a) '
% G, (jw) G (jw)
tb)
rijo) 4+ 1 0.1 (1+jw) 30 eljw)
0.1 1(1+0.)jw) (1+05jw) (1+jw) (1+10jw) o
/ G, (jw) G(jw)

%c)

F1a. 10.17. Use of phase lead to reshape a polar plot.

be noted that lead compensation rotates the vector at w = 2 in a counter-
clockwise direction away from the —1 point. It is also to be noted that
the length of this vector is increased. The complete log-magnitude
diagrams corresponding to the polar plots of Fig. 10.17 are shown in Fig.
10.18.

For a system which initially has a satisfactory value of M, the addi-
tion of lead compensation generally permits increasing the gain K.
Because of The counterclockwise rotation al vector as illustrated
in memgﬁhcrease wm.  As was

1SCUS e spee e of the system.
On the other ha.nd lag ‘compensation rotates the polar plot in a clockwise
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Fia. 10.18. log-magnitude diagrams for system which is compensated by inserting a
phase-lead component.

d@k%ﬁ_g decrease the value of w,. Thus, lag compensa-
tion usually dec Wem. o

Both series lag and serfestead compensation affect primarily the high-
frequency characteristics. They have little or no effect upon the low-
frequency portion of the frequency response plots.

Lag-Lead Compensation. Lag-lead compensation is in effect a series or
cascaded combination of a lag and a lead network. The general transfer
function for a lag-lead compensator is

Ei(s)  Y(s) 14781+ cris

E.8) X)) ITH+rslFers (10.18)
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where 71 > 7, and ¢ is a constant less than 1 and such that 75 > ¢ry or
72/T1 > ¢.  The substitution of jw for s gives

E(jo) _ Y(jw) _ 1+ jrawl 4+ jeriw
E.(jo) X(jw) 14+ jriel + jerw

Rather than using a lag and a lead compensator in series, it is possible to
use a single compensator, as shown in Fig. 10.19.

(10.19)

Cl
_K ¢ K, _rx
L AAA—]
T R R, c, R
Ein EO
| |
I - CzT Kz
Es) _ (1 +m8)(l+ors)  ¥(s) _ (1+me)(l + oris)
Eu® U +n)d fos) X U Fr)( Form)

R,C, 2 C,

Te 2Lz T1 P T2 K, T oK,
c=1— R\C, c=l-—Cz/Kl
TL — T2 T1 — T2

F1a. 10.19. An electrical and a mechanical component used to obtain lag-lead com-

pensation.
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F1a. 10.20. log-magnitude diagrams for lag-lead compensation,
1 +jrwl + erw
1 +jrwl + crow

The log-magnitude diagrams for a typical lag-lead compensator are
shown in Fig. 10.20. Because r; > 72 > ¢r1 > crs, the first break fre-
quency occurs at w; = 1/7;. This break frequency belongs to a denomi-
nator term so that the magnitude plot has a slope of —1 log units/decade
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between w; and ws. The second break frequency we = 1/7, is associated
with a numerator term; and thus the magnitude plot again becomes
horizontal. The third break frequency ws = 1/er1 = wi/c also occurs in
the numerator. This results in a slope of 41 log unit/decade in the
region from w; t0 ws. Finally, the break frequency ws = 1/crs = ws/c
which occurs in the denominator causes the magnitude curve to become
horizontal again. It is to be noted that for w > (w2 + w3)/2 attenuation
is accompanied by phase lead. This feature makes it possible to obtain a
considerably greater increase in the gain K than is usually possible with
either a lag or a lead compensator. This fact may be substantiated by
noting from Fig. 10.12b or Fig. 10.17b that a counterclockwise rotation
and attenuation of a vector have a greater effect on reshaping the
polar plot than does the compensation which is indicated on these polar

x + G, (jw) | Y
- LN Gjw) ==

H,(jw)

F1a. 10.21. Internal feedback H(s) placed about an element G1(s).

plots. The use of lag-lead compensation has about the same effect of
increasing w, and the corresponding speed of response as does lead -
compensation.

As is indicated by Fig. 10.20, lag-lead compensation does not affect the
low- or high-frequency regions but rather the mid-frequency region.

10.5. Internal Feedback. Another method commonly used to alter
frequency-response characteristics is that of providing a separate internal-
feedback path about certain components. In employing log-magnitude
diagrams to investigate the effect of internal feedback, the use of a few
simple approximations affords much simplification. This approximate
analysis in effect puts the designer in the right “ball park.” In the
latter design stages, it may be desirable to make an exact analysis. The
approximations which are used to evaluate the effect of placing a feedback
element H,(s) around a component G1(s) as shown in Fig. 10.21 are that,
when |G1(jw)H1(jw)| K 1,

. _ Gl(jw) . .
CU9) = 7 G,GayEGa ~ 1) (10.20)

For the case when |G1(jw)H 1(jw)| > 1,

o eGe) GG _ 1
GUe) = T GG HGS) = GG HGe) ~ HiGa 102D

When |G1(jw)H1(jw)| = 1, then |G1(jw)| = 1/|H1(jw)|; thus the inter-
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section of the log-magnitude diagram for |G1(jw)| and that for 1/|H,(jw)]
determines the point at which |Gh(jw)H(jw)] = 1. It follows from
Eqgs. (10.20) and (10.21) that the frequency response is altered only when
|G1(jw)H1(jw)| > 1. The application of the use of internal feedback is
now demonstrated.

In Fig. 10.22a is shown a component which has a unity-feedback path
[Hi(jw) = 1] around it. The log-magnitude diagram for G,(jw) is the
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Fic. 10.22. (a) Unity feedback placed about a component; (b) determination of the
approximate frequency response for a component with unity feedback; (c) comparison
of the approximate and exact frequency response for a component with unity feedback.
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dashed line in Fig. 10.22b. The plot for 1/H1(jw) = 1 is indicated by
the long- and short-dashed line. As shown in Fig. 10.22b, the curve of
log |G1(jw)| intersects that for log [1/|Hi(jw)]] at w = 3.16. Thus, for
* @ < 3.16, the response is approximated by 1/H,(jw), and for » > 3.186,
the response is approximated by G1(jw). The exact value for G(jw) is
obtained by solving the equation G(jw) = G1(jw)/[1 + G1(jw)H (jw)].
In Fig. 10.22c are shown both the exact value of G(jw) and also the
approximation G(jw).

In applying this procedure, it makes no difference whether H,(jw) is a
constant or some function of the frequency w. The intersection of the
log-magnitude plot for log |G1(jw)| and that for log [1/|H:(jw)|] deter-
mines the frequency . at which |G4(jw)H (jw)| = 1, whence the approxi-
mations are made.

Usually at high frequencies |G1(jw)H1(jw)| < 1, and thus it follows
that internal feedback does not
affect the high-frequency response.
- However, the low-frequency response
1/H(jw) is determined entirely by the
feedback component. G Vjw)

In summary, this approximation
converts an internal-feedback path to Real
an approximate open-loop element for om0 axs
which a standard analysis can be
made. With the use of inverse polar Lo
plots, as is next described, no approxi- gi‘f( jig'_%' Typical inverse polar plot,
mations are employed.

Inverse Polar Plots. A plot of the function G—'(jw) = 1/G(jw) is called
an inverse polar plot. In Fig. 10.23 is shown a typical inverse polar plot
of the function G—(jw). At any frequency w, the vector from the origin
to the graph defines the vector G—'(jw) for that frequency. The length
of the vector is |G—1(jw)| = |1/G(jw)|, and the angle is

w i

£G-1(ju) = 4@53 = — %G(ju)

A plot of M circles and « lines for inverse polar plots is accomplished
by first taking the reciprocal of Eq. (9.52), i.e.,

rGe) 1+ GGw) oy
o) = GGa)  ~ G '0e) +1 (10.22)

A typical vector G~'(jw) as shown in Fig. 10.23 may be written in the
general form G—!(jw) = 2 + jy. Substitution of this general representa-
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tion for G—!(jw) into Eq. (10.22) gives

283 —z4t 14y (10.23)
Because M = |c(jw)/r(jw)|, from the magnitude of Eq. (10.23) it follows

that

r(Go) | _ 1 GEIDTF
)| == Ve+D Ty

Squaring this result gives

1
@+ +y =95 (10.24)
Thus, on the inverse plane, lines of constant M are circles of radius 1/M.
The center of these concentric M circles is at the point £ = —1 and

-90° j
o= —45°
a=0" _ Real
BXIS
-1
+138° | a=+45°
+90°

F16. 10.24. M circles and « lines on the inverse plane.

y = 0, that is, the —1 point. A plot of these M circles on the inverse
plane is shown in Fig. 10.24. Because the reciprocal of —1 is still —1,
this point has the same significance for an inverse polar plot as for a
direct polar plot. Polar plots are referred to as direct polar plots when
it is necessary to distinguish them from inverse polar plots.

The lines of constant @ = X [¢(jw)/r(jw)] = — X.[r(jw)/c( ]w)] are deter-
mined from Eq. (10.23) as follows:

r(w) _ ., Y _
oGy = — tan ' (10.25)

a=—x
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When plotted on the inverse plane, as is shown in Fig. 10.24, constant a

contours are radial straight lines which pass through the —1 4- jO point.
As is illustrated in Fig. 10.25, the

. angle ¢ of a radial line drawn from 4j

the origin tangent to any M circle is

/M| _ 1 M

siny = =+ =4 (10.26 ' v Real
I—ll M ( ) -1 axis

The use of the inverse polar plot
for determining the gain K to yield a
desired value of M, is similar to that  piq 10,25, Tangent line to an M circle.
for the direct polar plot. Consider
the same function G(jo) = K/[jw(1 4+ 0.1jw)] discussed in Chap. 9.
The plot of the inverse function

K VR .
GG = K60 = ju(l +0.1j0) (10.27)

is shown in Fig. 10.26. For a desired M, = 1.4, the angle ¢ of the
tangent line is
. 1 . 1
¥ = sinT! g7 = sin~l 7 = 45.6° (10.28)
Next construct by trial and error the circle which is tangent to both the
KG'(jw) plot and the tangent line. In order that this circle be the
desired M., circle, its center must be at the —1 point. From Fig. 10.26,

it is to be seen that the center is at —A = —16.7. To convert this to
the — 1 point, the scale factor must be multiplied by 1/4 = 1/16.7 =0.06.

\J
412
KG™!(jw)
48
14
\ A i _ Real
-20 =16 =12 -8 I-4 0 axis
f -A

Fia. 10.26. Inverse polar plot KG™'(jo) = jo(1 + 0.1jw}).
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The resulting function G~'(jw), which is tangent to the desired M circle, is

G (jw) = %[KG‘I(jw)] = 0.06jw(1 + 0.1jw)

167
Jo(1 + 0.1jw)

Thus, the value of A yields directly the required gain K.

The general procedure in obtaining K by use of the inverse polar plot is:

1. Plot the inverse function KG—(jw).

2. Construct the tangent line in accordance with Eq. (10.26).

3. By trial and error, determine the circle which is tangent to both the
KG~(jw) plot and the tangent line.

4. The desired gainis K = 4.

The major advantage of using the inverse plane is realized for systems
with internal feedback. The reciprocal of Eq. (10.20) is

1+ Gu(je)Ha(o) _
G.(G)

The vectors Gy (jw) and H,(jw) may be added as vector quantities to
yield G-!(jw), as is illustrated in Fig. 10.27.

»l RH,(jw) lo Yi

IH (jw) H{jw)

S

or G(jw) = (10.29)

G (jw) = G '(jw) + Hi(jw)  (10.30)

G, 'w)

Real

axis

F16. 10.27. Vector addition of Gy™(jw) and Hy(jw) to yield G(jv).

Illustrative Example 1. For the system shown in Fig. 10.28a, let it be
desired to determine K; so that M,, = 1.4.
SOLUTION. For this, system

K, A’Gl(jw')
1 + Gl(]w)Hl(]w)
1 . , "y
o 67M(ju) = 2 16 ) + Hi(ie)] = - )

G(jw) = (10.31)

Hi(jw)
K,
(10.32)

_I_
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First construct the plot for

Hi(jo) _ (1 + 04j0)
K; 10

= 0.5 + 0.2jw (10.33)

As is shown in Fig. 10.28b, the real part of Hi(jw)/K, is always 0.5 and
" the imaginary part is 0.2 for w = 1, 0.4j for v = 2, etc. The function
K.G'(jw)/K, is

2 K GGe)] = 22 o950 (1039)
2

The value of K:G1~1(jw)/K, for v = 1 and 2 is added to the H:(jw)/K.
plot, asis shown by the solid arrows in Fig. 10.28b. Multiplication of each
K.G1 Y (jw)/ K vector by 1/K, to obtain G1~'(jw)/K: is effected by chang-
ing the length of each of these vectors by the factor 1/K,, as indicated by

the dashed extension of each vector. The required value of 1/K, is the

K, G, (jw)-
r() _+ 10— K, e(t)
i T je(1+2jw) i
H,(jw)
5(1+04jw) [«

(a)

2 (K, G ) +Hy )]
2

(b)

Fia. 10.28. (a) System with internal feedback; (b) determination of K, by inverse
polar plots. c
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KZ . Gl (Jjw)
rt) + 25 10 c(t)
! A i T Jw (1+jw) o
(a)

' o Real
05 . = axis
Fia. 10.29. System without internal feedback.
X, G, (jw)
r(t) + 25 Lt | 10 e(t)
o - D Jw (1+jw)
H, (jw). (e
(a)
, Hue) y
¢ Yw 1./
/ s@)= l(Jw) K, 11
—
~—_5
N
¢
1 . N 3 105
0.5 0477 \™
K,G, (jw) ¢ RN
2
§ 5
4 3 \
45
_— ' ' ' X _Real
-2 -15 w -05 0 05  -axs
M=5
M=14

F1e. 10.30. System of Fig. 10.29 with internal feedback.
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factor which makes the resulting inverse polar plot G—'(jw) tangent to
the desired M, circle. In this case, 1/K; = 2, or K; = 0.5.

Tllustrative Example 2. For the system shown in Fig. 10.29a, the
+ value of K;is 10 and K. is 2.5. From the inverse polar plot 1/K:G1(jw)
of Fig. 10.29b, the value of M, is found to be 5. If it be desired to obtain
an M., of 1.4 by the use of an internal-feedback loop as shown in Fig.
10.30a, what feedback element H(jw) should be used?

AJ

L\ »Real
0 05 axis

Fia. 10.31. Use of inverse polar plot to increase the speed of response.

soLuTION. The equation for the inverse polar plot with internal
feedback is

1 _ 114 GUo)HiGe) _ 1 Hy(jo)

Q(jw) K. G1(jw) " K:Gi(jw) K,

The quantity H;(jw)/K: must be such that when it is added to 1/K.G1(jw)
the resulting plot will be tangent to the M = 1.4 circle. To do this, it is
necessary only to raise the original plot vertically. It is to be seen from
Fig. 10.27 that the horizontal component of H:(jw) is its real part
® Hi(jw) and the vertical component is its imaginary part § Hi(jw).
It is thus necessary only that H;(jw) be purely imaginary, i.e., of the form
H,(s) = Bs or Hi(jw) = jBw. In Fig. 10.30b, it is to be noted that, at
w = 5, the addition of H,(j5)/Ks = 0.5f to the 1/K»G.(j5) plot causes
the resulting curve to pass through the top of the M = 1.4 circle. For
this case, the value of 8 is j85/2.5 = 0.5j, or 8 = 0.25. The resulting
curve may now be constructed as indicated by the dashed line in Fig.
10.30b. Because this curve is not tangent to the M = 1.4 circle, another
trial value must be taken. From the dashed loci of Fig. 10.30b, it now
appears that the point of tangency is more likely to occur in the neighbor-

(10.35)
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hood of w = 4.5. The addition of H,(j4.5)/K. = 0.47j to 1/K:G,(j4.5)
causes the new resulting curve to be tangent to the desired M circle.
In this case j84.5/2.5 = 0.47j, or 8 = 0.26. Thus, the desired result is
H,(jow) = 0.26jw.

When H,(jw) is a constant, H,(jw) is entirely real. As may be seen
from Fig. 10.30b, the effect of a constant H,(jw) is to shift the inverse
plot horizontally to the right. Suppose in the preceding problem that it
is desired to increase the speed of response by having w. equal to 6
rather than 4.5. After assuming a few trial values for H,(j6)/Ks, it is
found that H.(j6)/K. = 0.6 + 0.4j makes the resultant plot tangent to
the M = 1.4 circle at w = 6, as is illustrated in Fig. 10.31. Because
H,(j6)/K. = 0.6 4 0.4 = 0.6 4+ jB6, then 8 = 0.4/6 = 0.067, whence
the required H,(jw) is '

Hy(jo) = K2(0.6 4+ jBw) = 1.5 4+ j0.167w (10.36)

The general procedure followed in this illustrative example was to
assume a value of H,(jw) which makes a point lie on the desired M cirecle.
From this assumed value, the general equation for the resulting plot
was obtained. When the assumed point is not the point of tangency,
then another trial point must be selected.




CHAPTER 11

HYDRAULIC SYSTEMS

11.1. Introduction. Hydraulic devices are used extensively in control
systems. With high-pressure hydraulic systems, very large forces are
obtained. Such forces provide power for rapid accelerations, accurate
positioning of heavy loads, etc. Because hydraulic motors are much
smaller than equivalent electric motors, considerable size and weight
savings can be realized.

In electrical systems, magnetic devices such as motors, solenoids, ete.,
are used to provide the “muscle” for doing work. The operation of
magnetic equipment is characterized by relatively long time lags. In
general, hydraulic components are very rapid-acting. Another feature
is that hydraulic equipment is more rugged than corresponding electrical
components. This can be a major factor in applications such as aircraft,
where vibrations and shock may cause fine wires and delicate tubes or
transistors to fail. In addition, the noise pickup from such vibrations
may adversely effect the normal operation of electrical equipment.

Electrical equipment is better suited for applications in which com-
ponents must be located far apart, as in remote-control positioning
systems. The reason for this is that electrical signals may be trans-
mitted long distances via wires or microwaves.

In general, pneumatic and hydraulic systems are quite similar. An
advantage of pneumatic equipment is the accessibility and convenience
of using air. However, because of the compressibility of air, pneumatic
systems do not have the positive action afforded by hydraulic systems,
which employ an incompressible fluid as the working medium.

Electrical components are inherently better suited for certain opera-
tions, hydraulic components for others, and pneumatic components for
still others. However, for many applications, it is possible to accomplish
a desired function almost equally well by electric, hydraulic, or pneumatic
equipment. Thus, the designer must weigh the relative importance of
size, weight, cost, accuracy, ruggedness, reliability, etc. Frequently, it
is necessary to make a detailed design analysis of corresponding electric,
hydraulic, or pneumatic components to obtain a good evaluation of these
various factors. Sometimes, it may even be necessary to build models
for testing before a final decision can be made. It is not uncommon to

207
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utilize all three types, i.e., electric, hydraulic, and pneumatic equipment,
in one control system.

To be able to select the components which are best suited to his
particular requirements, a designer must be familiar with all types of
commonly used control apparatus. Characteristics of pneumatic and
electric apparatus are presented in the next two chapters, respectively.
This chapter presents basic considerations involved in the design of
hydraulic systems. Emphasis is given to explaining the basic laws and
equations which govern the operation of hydraulic equipment. Typical
examples of commonly used hydraulic devices and the manner in which
their performance may be evaluated are also presented. These basic
~ principles and techniques may then be applied to any hydraulic equip-
ment. In one chapter it is not possible to indicate the innumerable
practical applications and uses for hydraulic systems.!* Thus, of
necessity, the primary effort of this chapter is limited to basic considera-
tions.

Three major classifications of elements for hydraulic circuits are
pumps, valves, and receiving units. The basic functions of these ele-
ments are distinguished as follows: pumps supply the high-pressure fluid
for the system, valves control the direction and amount of flow, and
receiving units utilize this flow of fluid to accomplish the desired objective.

11.2. Pumps. The three types of pumps most commonly used for
hydraulic power purposes are the gear pump, vane pump, and piston
pump.

Gear Pump. A gear pump is shown in Fig. 11.1. Because of the
direction of rotation of the gears, the inlet fluid is carried around the outer
periphery of the gears to the high-pressure discharge side of the pump.
The meshing gear teeth provide a seal to prevent return of the fluid
to the low-pressure side of the pump. This type of pump is less expen-
sive than other pumps and is also very rugged. Its best efficiency occurs
at lower speeds and operating pressures than those for vane or piston
pumps.

There is a leakage between the tips of the gear teeth and the housing
and also between the sides or faces of the gear blanks and housing. At
high pressures and operating speeds, this leakage increases considerably,
which tends to decrease the over-all efficiency of this pump.

! Publishers of Applied Hydraulics, “Fluid Power Directory 1958/ 1959 ” Industrial
Publishing Corp., Cleveland, 1957.

*J. J. Pippenger and R. F. Koff, “Fluid-power Controls,” McGraw-Hill Book
Company, Inc., New York, 1959.

3J. G. Truxa.l “Control Engineers’ Handbook,” McGraw-Hill Book Company, .
Inc., New York, 1958.

¢ I McNeil, “Hydraulic Operation and Control of Machines,” The Ronald Press
Company, New York, 1958.
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F16. 11.1. Gear pump. Fie. 11.2. Vane pump.
A 4——'
Stroke . |
8
P %FL Case _\ B I 1
< /-Valving plate

L (stationary )

Drive
shaft

Wobble plate

Rotor B - I q
i
a1

Section views

(e)
Inlet Discharge

(b) (d)

Section B-B ~ Section A-A (a)
Fie. 11.3. Axial piston pump.
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Vane Pump. A vane pump is shown in Fig. 11.2. The centrifugal
force on each of the vanes is usually sufficient to maintain contact between
the vanes and the housing. For a counterclockwise rotation of the
rotor as shown in Fig. 11.2, a large amount of fluid is carried from the
inlet side of the pump to the discharge side. Because of the eccentricity
e of the center of the rotor with respect to the housing, more fluid is
carried to the high-pressure side of the pump than is returned to the
low-pressure side. The net flow is seen to depend upon the amount of

Fia. 11.4. Radial piston pump.

eccentricity e. By varying the eccentricity, a vane pump can be used
as a variable-delivery pump.

Azxial Piston Pump. An axial piston pump is shown in Fig. 11.3. The
pistons are located in the rotor (i.e., rotating cylinder block), which is
driven by the drive shaft. Because the pistons are parallel to the drive
shaft, this type of pump is called an axial piston pump. The wobble plate
does not rotate, and furthermore its angle of inclination 8 is set by the
position of the stroke-adjusting lever. The axial displacement of each
piston (X = D tan g) is varied by changing the angle of inclination 8 of
the wobble plate. As a piston in the eylinder block rotates in a clockwise
direction from (a) to (b) to (¢) (pump viewed from right end), fluid is
being admitted as the stroke is increasing. Then in going from (¢) to
(d) to (a) the fluid is forced out to the high-pressure, or discharge, side of
the pump as the stroke is decreasing.

Radial Piston Pump. The pistons of a radial piston pump move in a
radial direction, as is illustrated in Fig. 11.4. The inner shaft (ie.,
pintle), which contains the inlet and discharge passageways, is fixed, as
is the housing. As a piston in the rotor rotates clockwise from (@) to
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(b) to (¢), fluid is being admitted as the stroke increases. Then in going
from (c) to (d) to (a) fluid is forced out at high pressure as the stroke is
decreasing. The stroke and thus the amount of fluid delivered are varied
by changing the eccentricity between the center of the housing and the
center of the rotor.

The selection of a pump for a particular application depends upon
many factors, such as quantity of fluid to be delivered, discharge pres-
sure, reliability desired, cost, operating efficiency, size, etc. As is the
case with most specific equipment, a manufacturer’s catalogue should
be consulted to obtain data regarding such details.

In general, the power output for any pump may be computed from the
equation

i (11.1)

where @ = net rate of flow delivered, in.3/sec

P, — P;, = change in pressure. psi

The over-all pump efficiency is equal to the hydraulic power output of
the pump as given by Eq. (11.1) divided by the power supplied to drive
the pump.

pressure

l Drain

F1a. 11.5. Relief valve.

11.3. Valves. From the time the fluid leaves the pump until it
reaches the receiving units, the flow is controlled and directed by valves.

Relief Valve. A relief valve is shown in Fig. 11.5. When the pressure
P, in the main flow passage is high enough to overcome the spring force
tending to close the valve, the valve opens. This connects the main flow
passage to the return to sump (i.e., pump reservoir), which is at drain
pressure. This relief valve remains open until the pressure P; decreases
to the value that was required to open the valve. In effect, then, a
relief valve limits the maximum  obtainable pressure P,. Because of
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its function, this type of valve is often referred to as a pressure-regulating
valve.

If A is the cross-sectional atea of the plunger in the relief valve, then
the pressure force P1A tends to raise the valve. The force F. is the force
exerted on the plunger by the spring when the valve is closed. When
the plunger is raised a distance X from its closed position, an additional
force KX is exerted by the spring. Thus

PA = F + KX (11.2)
KX
or P, = A c+ — a (11.3)

To minimize the variation in pressure P; due to the opening X, then
K /A should be assmall as possible. In
addition, by making the diameter D of

Relief valve the plunger large, the plunger does not
have to open so wide to bypass the flow.
This minimizes the opening X. For

4 most applications, the pressure P; may
be regarded as the cracking pressure
F./A, that is, the pressure at which the
G,D Fixed displacement valve j}lst opens or cracks. )
pump In Fig. 11.6 is shown the fluid supply
system for a typical hydraulic circuit.

The oil in the sump is strained before

going to the pump, which is driven by a

=] motor. A fixed-displacement pump is

Sump or reservoir indicated by the circle with PF in it.
F1a. 11.6. Relief valve used to pro- The representation for the spring-loaded
vide a constant-pressure power relief valve indicates that the pressure
supply. in the main line is opposed by the
spring shown on the opposite side of the rectangle. The arrow in the
box indicates the direction of flow through the valve. The arrow is
drawn in the position that indicates the flow when the spring force is
greater than the opposing pressure. In this case, the flow is blocked
off. When the opposing pressure exceeds the sprmg force, it is connected

to the sump. The drain, or return to sump, is indicated by drawing a

little sump under the valve.

A fixed-displacement pump which is driven at a constant speed delivers

a relatively constant amount of flow regardless of the discharge pressure.

The excess flow not used by the system is bypassed by the relief valve. .

This bypass flow represents wasted power because it was supplied at

high pressure. The resulting wasted energy increases the temperature

System
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of the fluid in the system. If the rise in temperature is sufficient, it may
be necessary to provide a cooler.

Accumulator and Unloading Valve. A constant-pressure supply Inay
also be obtained by the use of an accumulator and an unloading valve,
as is shown in Fig. 11.7a. The accumulator holds the supply of fluid
at constant pressure for use as the system needs it. An accumulator
has an elastic diaphragm or bladder to separate the top portion, which.

-Accumulator
B
To
—
system
Unloading
valve (a)
From L @
pump _
P To
N { system
|
b _d

Fia. l11.7. Accumulator and unloading valve used to provide a constant-pressure power
supply.

contains a gas under pressure, from the supply of fluid on the bottom
side. The purpose of the gas is to maintain the fluid pressure. As the
fluid level drops, the gas expands and the pressure of the fluid decreases
slightly. The same effect may also be obtained by using a spring to
load the top side of the diaphragm.

The unloading valve in Fig. 11.7a is drawn in the position in which the
pump flow is refilling the accumulator. The check valve offers no
resistance to flow to the accumulator, but it closes off to prevent reverse,
or leakage, flow. As the accumulator fills, the pressure P, increases and
the plunger rises. Just before the drain port is uncovered, the pressure P,
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is acting on both sides of the bottom land. The net upward force on the
valve is P1A;. After the drain is uncovered, both sides of the top land
are connected to drain, as is the top side of the bottom land, so that the
upward force is now P1A;. Because A, is greater than 4., the upward
force suddenly increases to unload the pump by opening the drain port
wide. Thus the pump is unloaded when
p— Fc
T4,
where F. is the force of the spring when the drain port is just uncovered
and Pi .. is the maximum value of P,. As the fluid in the accumulator
is used, the pressure P; decreases and the plunger moves down to close
off the drain. Just before the drain is closed off, the forces acting on
the plunger are

P max (11.4)

Pl,m,,, = ZF; (11.5)

where P .. is the minimum value of P;. After the drain port is closed
off, the pressure force is suddenly decreased from P;4, to P14;. The
spring then pushes the plunger down to open wide
the passageway to the accumulator in order to refill
it. For a large accumulator, more fluid can be
used before the supply of fluid must be replenished.
The purpose of employing a differential-area
plunger is to prevent the pump from continually
being unloaded and then loaded, i.e., to provide a
spread between Pj .y and Pi min.

In the symbolic representation of the unloading
valve in Fig. 11.7b, the pressure of the fluid in the
accumulator opposes the spring force. The arrow
indicates the direction of flow through the valve
Fic. 11.8. Variable-de- When the spring force is greater than the pressure
livery pump to pro- force, i.e., when the accumulator is being refilled.
:::: p:wei(’:lf}t);?;" PreS-  When the pressure force excefads the spring force,

the pump is connected to drain.

The use of a variable-delivery pump to provide a constant pressure
supply is illustrated in Fig. 11.8. When the pressure to the system
exceeds the nominal value, the piston in the cylinder is forced down.
This actuates the pump-delivery control linkage to decrease the flow.
The maximum variation in supply pressure is equal to the variation in
pressure required to move the pump-delivery control linkage (e.g.,
wobble-plate control) from maximum to no flow. There are numerous
types of hydraulic power supplies; most of these, by far, are of the con-
stant-pressure type.

control

-




HYDRAULIC SYSTEMS 215

Much time and effort are saved by using the line-diagram method for
drawing hydraulic circuits. In Fig. 11.9 is shown a partial listing of
symbolic representations for various circuit elements. These are stand-
ard symbols which have been adopted for hydraulic circuits by the Joint
Hydraulic Industrial Conference (JIC).

Lines passing 4} Check valve

Lines joining l
/ | \ Three-way valve

Pump, fixed displacement

Pump, variable displacement
4 { Four-way valve

Motor, fixed displacement

®O®06f+

> NV Variable sized
Motor, variable displacement N restriction
l —\ —AM— Valivtfe, pressure
Cylinder, plunger type, relie
——— single-acting I
Cylinder, piston type, -
double-acting |
| 4l Reducing valve
L
@ Filter

® Pressure gauge = / A AA V
|
| I

1y

Fia. 11.9. JIC standard symbols for hydraulic circuits.

Unloading valve

I I I Line to reservoir

Differential-pressure-regulating Valve. A differential-pressure-regulat-
ing valve maintains a constant pressure difference Py — P; between two
points in a system. In Fig. 11.10qa, the pressure P, is determined by the
downstream characteristics of the system. This system must be supplied
by a constant-flow power supply such as is obtained by the use of a fixed-
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Differential pressure
regulating valve

Throttle valve or
variable restriction

To drain
Qd ;
Fgw—bpl VQ Pz
1
(a)
Ivl
L
P, v B
—~
(b)

Fia. 11.10. Differential-pressure-regulating valve.

displacement pump. When P, — P, exceeds the nominal value set by
the spring, the plunger rises to bypass more flow to drain. The flow
through the throttle valve is decreased because of this additional bypass
flow. This decrease in flow through the throttle valve in turn decreases
the pressure drop P; — P:acrossit. The force equation for the plunger is

or PI_P2=£°+%)_(

= (11.6)

As for the case of the relief valve, the quantity K/A should be small
and the diameter D of the plunger should be large to minimize the varia-
tion P; — P;from the cracking value F,/A. The pressure drop P, — P,
may be regarded as remaining essentially constant. Thus, the flow
across the variable-sized restriction, or throttle valve, is controlled
entirely by the area of the throttle valve. In effect, a flow control
device results.

If one writes the equation of motion for the plunger and considers

*y
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the mass M of the plunger, it follows that
Mp?X = (P, — P))A — KX —- F,
= 1/M[(P, — P;)A — F|]
or X = 2 T K/M

(11.7)

The term in brackets is the difference between the pressure force acting
on the valve and the spring force at cracking. From Eq. (11.7), it
follows that the plunger will tend to oscillate or chatter at its natural
frequency w, = \/K/M. This undesirable effect is avoided by inserting
a viscous damper in the line between the spring side of the plunger and
the discharge line at pressure P,, as illustrated in the symbolic representa-
tion of Fig. 11.10b. Viscous damping is provided by an orifice whose
length is sufficiently greater than its diameter so as to cause laminar flow.
The flow through such a restriction is given by the equation

aD* AP

Q = o8, = C AP (11.8)

where @ = rate of flow, in.3/sec

D = diameter of restriction, in.

AP = pressure drop across restriction, psi

L = length of restriction, in.

p = absolute viscosity, reyns (lb-sec/in.?%)
If the pressure behind the plunger between the spring and restriction is
designated as P;, the pressure drop across the restriction is AP = Py — Po.
Because the fluid is incompressible, the flow through this restriction is
equal to the change of volume A (dX /dt), on the spring side of the plunger.
Thus

C(P, — P,) = ApX (11.9)
The force equation for the plunger is now
Mp2X + KX = (P, — P,)A — F, (11.10)

Eliminating P, from Eqs. (11.9) and (11.10) and solving for X gives

1/M{(P, — Py)A — F.]
p*+ (4*/CM)p + K/M

whence w, = /K/M and ¢ = A2/(2C /KM). The viscous damper thus
provides a convenient means for eliminating the chatter. For steady-
state operation, there is no flow through the damper so that P, = Ps.
Thus, the basic function of maintaining a constant pressure drop
P, — P; is not altered by the damper.

Reducing Valve. A reducing valve is used to lower the pressure to a
predetermined value. That is, it regulates the outlet pressure from the

X=

(11.11)
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valve. A reducing valve is shown in Fig. 11.11a. When the outlet
pressure is equal to the cracking value set by the spring, the plunger just
shuts off the outlet from the inlet passageway. A decrease in the outlet
pressure lowers the valve to admit high-pressure fluid, which in turn
increases the outlet pressure. This then returns the valve to its line-on-
line position. An increase in the outlet pressure closes off the outlet
passageway. Thus, the outlet pressure is maintained at its cracking
value.

Although a relief valve could be used to regulate the outlet pressure,
such a valve would also lower the inlet pressure. A pressure-reducing

L8]
4
; L2
DI'aE\__ J.I.C. symbol ~
\
inlet
Ps = o
Throttle valve
(controls
flow area)
J L
— Qutlet —~—>Q D
ey
(a) (b) To nozzle

Fic. 11.11. (a) Reducing valve; (b) flow control with reducing valve.

valve regulates the outlet pressure independently of the inlet. Relief
valves and reducing valves are readily distinguished as follows: The
spring of a relief valve tends to close it, while that of a reducing valve
tends to open it. The pressure force acting on a relief valve tends to
open it, while that of a reducing valve tends to close it. In the symbolic
representation for the reducing valve, the outlet pressure opposes the
spring force. When the outlet pressure gets high enough, the inlet is
disconnected from the outlet.

The use of a reducing valve is illustrated by the flow control system
shown in Fig. 11.11b. The discharge pressure P, is controlled independ-
ently by the nozzle characteristics which are downstream from the flow
control portion of the system shown in Fig. 11.116. To have the flow
Q a function of the position of the throttle valve only, it is desired to
maintain a constant pressure drop across the throttle valve. From
Fig. 11.11b, it is seen that the pressure drop P,-P. across the throttle
valve acts across the reducing valve. The reducing valve tends to
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maintain this pressure drop constant because if P; decreases, then the
valve opens the outlet-pressure port wider to increase P,. Similarly,
if P,-P; exceeds the nominal value determined by the spring force, the
reducing valve moves up to close off the outlet port, which in turn
returns P;-P; to its nominal value. For this system, the value of the
inlet pressure is independent of the operation of the system, whereas
with the differential-pressure-regulating valve the inlet pressure was
P, = P,. To eliminate chatter of the plunger of the reducing valve, it

o Y Y~

. I
lB]|~A
K ———
FL
T\ T
Uy
P,
(b) i

—x>Kl—té 1 A

p+K, (Mp>+Cp+K)

(c)

F1a. 11.12. Three-way-valve-cylinder circuit.

is necessary to insert a viscous damper in the line connecting the spring
side of the plunger to the discharge line at pressure P,, as was done for
the differential-pressure-regulating valve.

11.4. Three-way Pilot Valve. The purpose of a pilot valve is to con-
trol the direction and amount of flow to a receiving unit. A spool-
type pilot valve is one in which the shape of the valve resembles that of
a spool. A circuit which utilizes a spool-type valve is illustrated in
Fig. 11.12a. This valve has three external ports: a high-pressure, (or
supply) port, a cylinder port, and a drain port. Thus, this valve is further
classified as a three-way pilot valve. Pilot valves are sometimes referred
to as control valves, servo valves, or proportional valves. When the
valve is moved to the right, the high-pressure line is connected to the
cylinder port and the drain is blocked off, Although high pressure is
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now connected to both sides of the piston, there is a larger area exposed
to this pressure on the right side of the piston than on the left. Thus,
the greater force on the right side causes the piston and load to move to
the left. When the valve is moved to the left of its line-on-line position,
the cylinder port is connected to drain. The high pressure which always
acts on the left side of the piston now forces the piston and load to move
to the right.

The symbolic representation for this circuit is shown in Fig. 11.12b.
The right half of the valve representation indicates the line connections
when the valve is moved to the right. The direction of the arrow indi-
cates the direction of flow from the high-pressure port to the cylinder.
The drain connection is blocked off. It is not necessary to reproduce the
location of the ports for the left position. With the valve in its left posi-
tion, the arrow indicates that the direction of flow is from the cylinder
port to drain. The high-pressure port is blocked off in this position.

Because turbulent flow exists at a sharp-edged orifice such as a valve,
the flow equation when the valve is moved to the right is

Q= CaWX \/gpg (P, — Py) = KiX /P, — P, X>0 (11.12)

where Kq = CaW \/2g/p
@Q = flow through valve
Cq = discharge coefficient
WX = port area in which X = length of opening and W = circum-
ference
p = fluid density
g = gravitational conversion constant
When the valve is to the left of its line-on-line position, the flow rate is
given by the equation

Q=KXvP, X<0 (11.13)

From Eq. (11.12), it is to be noted that flow into the cylinder is repre-
sented as a positive quantity. Because X is negative in Eq. (11.13),
the return flow is also negative.

From Fig. 11.12g, it is to be seen that the flow rate through the valve
is equal to the area A, of the right side of the piston times the piston
velocity pY. Thus

Q = ApY = A,)Y (11.14)
The pressure force acting on the piston is

F = P1A1 - P.Az (11.15)
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For positive values of X, the over-all equation relating F, X, and Y is
obtained by substituting P, from Eq. (11.15) into Eq. (11.12) and then
substituting @ from this resulting expression into Eq. (11.14). Thus

. Q KX |5 _F¥PA
Y=4. =74, V&> "
K‘X X VP = Ay = X>0 (11.16)

For negative values of X, Eq. (11.13) must be used rather than Eq.
(11.12). Thus, substituting P, from Eq. (11.15) into Eq. (11.13) and
then substituting @ from this resulting expression into Eq. (11.14) gives

Q _KiX |F+ PA,
4, 4, A,

K"X XVF¥PA, X<0 (11.17)

Y =

In both Eqs. (11.16) and (11.17), it is to be noticed that Y is a function of
X and F. Thus, linearization of Eqgs. (11.16) and (11.17) gives

) oY ay
y=pm=5x|*t 57 |f
or y= E—l—x;—K’f (11.18)
where for X > 0
| =t VP — A —F| - K (11.19)
Y —KiX
a1 = = K 11.20
aFL 2A%\/P,(A, — A;) — F : ( )
and for X < 0
| = M VFT P = K (11.21)
1 t
£)4 KX
— | = —_— | = — 11.22
oF '.- 24%\/F + P.Az].' ? (11.22)

In the general case, the pressure force F acting on the piston is resisted
by the inertia Mp?Y of the load, viscous friction CpY, a spring force K'Y,
an external load F, thus,

= (Mp*+ Cp + K)Y + F
Linearization gives ’

F=WMp*+Cp+Ky+ /o (11.23)
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The substitution of f from Eq. (11.23) into Eq. (11.18) yields the follow-
ing over-all equation of operation for the valve-cylinder circuit:

[p + Ko(Mp* + Cp + K)ly = Kiz — KufL (11.24)

The block-diagram representation for Eq. (11.24) is shown in Fig. 11.12¢.

For smooth operation, it is desirable that K, be the same for positive
as well as negative values of X, and in addition K, should be the same
for positive or negative values of X. By comparison of Eqs. (11.19)
and (11.21) and by comparison of Eqgs. (11.20) and (11.22) it follows
that both the preceding conditions are satisfied when the square-root
terms are the same, i.e.,

PA, -~ PA,—F=F+P,A,
or P‘Al 2(P.A2 + F) (1125)

When the nominal load F is quite small, the preceding result is satisfied
when A, = A,/2. For this case, it follows from Eq. (11.15) that
P, = P,/2, and thus Eqgs. (11.19) and (11.21) reduce to

_ Kd Fs - Cl .

The normal operation of most valves is about the reference point
X;=0. In this case K; = 0 in accordance with Eqs. (11.20) and
(11.22). When K, = 0 and Eq. (11.26) is applicable for K;, Eq. (11.18)
reduces to the result that was given by Eq. (2.56), i.e.,

1

, y A:p ’

In Fig. 11.13a is shown a typical family of curves of F versus Y with
constant valve positions. X. These curves may be obtained analytically
from Eqs. (11.16) and (11.17). If an actual valve is available, it is
possible to obtain the curves experimentally.

One method of obtaining the curves experimentally is to disconnect
the cylinder and place a flowmeter in the P, pressure line. Then vary
the pressure P;, and plot the flow through the valve for various fixed
(constant) positions X of the valve. A typical family of flow curves is
shown in Fig. 11.13b (note that ¥ = Q/A,). For a given ¥ and X,
the corresponding value of P; may be determined, whence F may be
computed in accordance with Eq. (11.15). This process is repeated to
obtain corresponding values of ¥, X, and F for plotting Fig. 11.13a.
The family of curves shown in Fig. 11.13a is a plot of ¥ as a function of
X and F. Linearization of ¥ = f(X,F) again yields Eq. (11.18). The
value of K, = 3Y/8X|; is obtained directly from a vertical interpola-
tion of the curves about the reference operating point. Similarly
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K, = 3Y/aF|; is the slope of the line of constant X at the reference
point. Thus, these curves provide a very-convenient means for evalu-
ating K; and K, for a particular valve.

Overlapped or Underlapped Valves. Because of manufacturing toler-
ances, it is not possible to achieve an idealized line-on-line valve. An
actual valve will either be overlapped as shown in Fig. 11.14a or under-
lapped as illustrated in Fig. 11.15a. For an overlapped valve, a dead

Lines of con “ Y Curves drawn for
W 5 . jd = 11160
0.003 : R A:=2
T2, T P, =1,000
0.001 1
-2,000 -1,000 : N
- ' 0 TTlom - 2000
-0.001
—0.002
-0.003
- =000
(a) -5

-~16 (b) {

Fi16. 11.13. Flow curves for three-way valve.
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Fia. 11.14. Overlapped valve.
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(b)
F1e. 11.15. Underlapped valve.
zone occurs for —Xo/2 < X < X,/2. The plot of uncovered port area

A versus X is shown in Fig. 11.14b. The flow equations for an over-
lapped valve are

Q= KdW( —%) NG = x>
Q=0 ‘2X° <X g%’ (11.27)
Q=K.;W(X+%’)\/_P1 x<-%

For the underlapped valve of Fig. 11.15a, the valve must be moved to
the left a distance —X,o/2 in order to close off the high-pressure, or
inlet, passageway. In Fig. 11.15b, the inlet port area increases linearly
for X > —Xo/2. To close off the return flow, the valve must be moved
to the right a distance X,/2. As illustrated by the dashed line of Fig.
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11.15b, the effective port area for the underlapped region is the sum of
that exposed to inlet flow and that exposed to return flow so that the
resulting slope doubles in this region. For —Xo/2 < X < X,/2 the

- flow equation is

Q=K¢<X+£(2-9)\/I_’.—:-F;+Ka( -F)VF  aLs

When @ is positive, there is a net flow into the eylinder, and when @Q is
negative, there is a net flow from the cylinder. In Fig. 11.16 are shown
the flow curves in the underlapped region for the case in which

—X;—o = 0.001 in.

If an underlapped or overlapped valve is used, the partial derivatives
K, and K, must be evaluated from the appropriate equations. Nothing

:P,-I,OOO
I

|
|
|
|
1000 B, ibfin?

Fia. 11.16. Flow curves for underlapped valve.

else is affected in the preceding analysis of the valve-piston circuit. When
experimental curves are available for the valve, K, and K, may be evalu-
ated graphically from these curves.

For control applications in which X is proportional to the error signal,
it is usually undesirable to have a dead zone. The reason is that, for
small errors such that X is within the dead zone, changes have no effect.
The error must become sufficiently large before it is detected. Control
valves are usually dimensioned to ensure a slight underlapped condition.
This increases the valve sensitivity when X is within the underlapped
region.

Spring-loaded Piston. In Fig. 11.12a, the high-pressure line which
bypasses the valve and acts on the left side of the piston serves to provide
a constant force P,A.. This force moves the piston to the right when
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the cylinder line is connected to drain. This high-pressure bypass line
can be eliminated as shown in Fig. 11.17 by inserting a large spring
behind the piston.. The preceding analysis applies equally well to this
circuit except that the spring rate K of the load is increased by that of
the spring inserted behind the piston. '

11.5. Four-way Pilot Valve. ' A four-way pilot valve is illustrated in
Fig. 11.18a. The four ports are the high-pressure (or supply) port, a

Fia. 11.18. Four-way-valve—cylinder circuit.

port. each for both ends of the cylinder, and a drain port. When the
valve is moved to the right, port A is connected to high pressure and port
B to drain. This causes the piston to'move to the left. When the valve
is moved to the left, the reverse action occurs. The receiving unit shown
in Fig. 11.18a is called a double-acting cylinder. Because of the four-
way valve, it is possible to have the full supply pressure acting on either
side of the piston with the other side connected to drain. The cylinders
used with a three-way valve are single-acting. With a single-acting
cylinder essentially a constant force is applied to one side. This force
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is generally about one-half the maximum force that can be applied to
the other side. Thus, with the single-acting piston which is necessitated
by the use of a three-way valve, only about one-half the force can be
developed as for the case of a double-acting cylinder. Consequently,
four-way valves, which permit the use of double-acting cylinders, are
more commonly employed than three-way valves.

To analyze the operation of this circuit, it should first be noted that the
velocity pY = Y of the piston is

;@ _KXP =P
-2 e S X>0 (11.29)
Y=;@=I£4XA_\/Pl X <0 (11.30)
1 1

where Q, is the rate of flow through port A. In addition, it follows that

y = & _ KX VP X>0 (11.31)
4, As
y-% _KXvP — P VAP~—Pz X <0 (11.32)
2 2

where @, is the flow rate at port B.
The resultant pressure force on the piston is

F = PA, — PA, (11.33)

For X > 0, the desired functional relationship between Y, X, and F i is
obtained by eliminating P, and P, from Eqs (11.29), (11.31), and (11.33).

Thus
- [PA —F ,

Similarly, the corresponding relationship for X < 0 is obtained by elimi-
nating P; and P, from Eqgs. (11.30), (11.32), and (11.33). Thus .

PA, + F
Y = KdX\/A3+A2 X<0 (11.35)

In both Eqs. (11.34) and (11.35), ¥ is a functlon of X and F; thus
linearization gives

= le —Kzf

7 (11.18)
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The preceding result is the same as that given by Eq. (11.18) except
that the constants K; and K, are as follows:

For x>0 %Y =Kd1/P'L‘“—F = K,
X |; Al 4+ A3 (11.36)
¥ _ KX [AFH AR _ ‘
oF |; 2 VPA,—-F|;, 2

Foex<o Y| _g, M(=K
aXi' A13+A23i (1137)
Y| _ KX [A7 + 47 - _K )
aF; ~ "2 PA, +F|, 2

From the preceding expressions, it follows that the term K 1 will be
the same for positive or negative values of X and so will the term K, if

PcAl—'F=P,A2+F
or P,(A, — A,y) = 2F (11.38)

For the case in which the nominal load F is quite small and A, = 4,, the
resulting expression for K; reduces to that given by Eq. (11.26). If, in
addition, K, = 0, as is the case for X; = 0, the equation of operation for
this valve and cylinder reduces to the result that was given by Eq. (2.56).

A plot of the family of curves determined by Eqs. (11.34) and (11.35)
is shown in Fig. 11.19a. This plot greatly facilitates the determination
of K, =9Y/dX and K, = dY/dF. The curves for an underlapped
valve are as shown in Fig. 11.19b. To determine these curves for a valve
experimentally, first disconnect the cylinder, and then install a flowmeter
in the line for port A and one in the line for-port B. For port A, vary the
pressure P;, and obtain the flow curves of ¥ = @Q1/A, versus P, for con-
stant values of X. Similarly for port B obtain the flow curves of
Y = @32/ A, versus P, for constant valve positions. Then by assuming a
Y and X the corresponding value of P, is obtained from the curves for
port A and the value of P, from the port B curves. The force can now
be evaluated from Eq. (11.33). Thus, repeating this process to obtain
corresponding values of ¥, F, and X gives the desired curves shown in
Fig. 11.19b. ‘

11.6. Valve Forces. When fluid is flowing through a spool valve as
shown in Fig. 11.20, an axial force is exerted on the valve spool due to
the change in momentum of the fluid.}? As is shown in the following

tJ. F. Blackburn, G. Reethof, and J. L. Shearer, “Fluid Power Control,” Tech-
nology Press, M.I.T., Cambridge, Mass., and John Wiley & Sons, Inc., New York,
1960.

*J. E. Gibson and F. B. Tuteur, “Control System Components,” McGraw-Hill
Book Company, Inc., New York, 1958.
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F1a. 11.19. Operating curves for a four-way valve.

analysis, this hydraulic force is always such as to tend to close the valve.
This reactive force acts as a spring in that it increases linearly with the
opening X of the valve. Because of the large inlet port of width de for
the supply pressure, the inlet velocity is negligible, as is the change in
momentum. For the right, or exit, port, the effective width ab is small
so that the fluid leaves with a very high velocity. The change in momen-
tum is

‘%(M,,) = pQ_gV (11.39)
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where Mv» = momentum
p = density
Q = flow rate
V = exit velocity at vena contracta, ab
The axial component of force exerted on the valve spool is

F,=— %} cos 8 (11.40)

where 6 is the exit angle of the fluid. Lee and Blackburn! have found
that for the type valve shown in Fig. 11.20, in which the valve is square,
the value of 6 is 69°. In their analysis, it was assumed that the flow is

Supply
R, P

Drain L‘Lz L,

F1a. 11.20. Flow through a spool valve.

irrotational, nonviscous, and incompressible and that there is no radial
clearance. The velocity V is given by Bernoulli’s equation

V= \/2—,;" (P, — P)) (11.41)
By noting that @ = C43AV = C;WXYV, then
F, = —-2C,WX(P, — P;) cos 8 (11.42)

The force F, acts as a spring which is extended to its free length when X
is zero. When the valve is to the right of center and X is positive, the
force acts to the left to tend to-close the valve. When the valve is to
the left of center and X is negative, the force acts in the opposite direc-
tion, again to close the valve. The axial force may be written in the
form

Fl = —Kth (1143)
where K;, = 2C;W (P, — P,;) cos 69° is the equivalent hydraulic spring
rate. Similarly, it may be shown that the hydraulic force acting on the

18. Y. Lee and J. F. Blackburn, Contributions to Hydraulic Control, I, Steady-
state Axial Forces on Control Valve Pistons, Trans, ASME, vol, 74, p. 1005, 1952.
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left land is ' ' :
Fy = —2C,WXPscos 8 = —Ki X (11.44)

where K;, = 2CiWP; cos 69°. Thus, the total axial force is
F=—( + Kn)X = —KiX (11.45)

where K, = 2C,W[P, — (P, — P5)] cos 69°.

Lee and Blackburn! have also investigated the case of a valve with
radial clearance and with land edge of a finite radius. These factors
tend to increase the flow area and decrease the exit angle 6 so that the
axial foree tends to be somewhat greater than the analytical predictions
indicate.

In addition to the axial valve force which depends on the opening X,
Lee and Blackburn? have shown that a force is developed due to a
velocity dz/dt of the valve. This force may be visualized as follows:
Consider the right valve land in Fig. 11.20, in which the supply flow is
moving from left to right. With the valve at rest, this fluid has some
average velocity. If the valve is in motion to the left so.as to close if,
the amount of flow is being decreased by the closing of the port, thus
decreasing the average velocity of the fluid in the chamber. The force
exerted on the valve because of this decrease of momentum tends to resist
the motion of the valve. When the valve is in motion to the right, the
change in momentum of the fluid also tends to resist the motion of the
valve.

If the direction of flow across the valve land is in the opposite direction,
as is the case for the left valve land, then the change in momentum is in
the opposite direction. The resulting force acting on the valve now aids
rather than resists the motion. Lee and Blackburn have shown that
the reactive force due to motion of the valve is

Fl=- ;—’L% (11.46)

where L is the axial distance between the inlet and discharge ports as
shown in Fig. 11.20. This distance L is positive when the flow exits
from a port (for example, L;), and the distance L is negative when flow
enters the chamber through a port (for example, Ly).t This force may

1 Jbid.

2 8. Y. Lee and J. F. Blackburn, Contributions to Hydraulic Control, II, Transient
Flow Forces and Valve Instability, Trans. ASME, vol. 74, pp. 1013-1016, 1952.

t When the force F' is written in the form F' = (p/g)L(dQ/dt), then L must be
regarded as negative when the flow exits and positive when the flow enters. The
advantage of the form given by Eq. (11.46) is that positive L corresponds to positive
damping and negative L results in negative damping.
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be expressed as a function of the velocity of the valve as follows,

d d 2 29
_d%? -2 (C,,WX \/79 P) = CdW\/—qu Pz (11.47)

where P is the pressure drop across the restriction. In this analysis, it is
assumed that the pressure drop across the valve may be considered to
remain constant. If P is not constant, the preceding differentiation
yields an additional term proportional to the rate of change of the pressure
drop. Substitution of the preceding value for dQ/dt in Eq. (11.46) gives

P = —C'aWL\/%pP pa (11.48)

Because this force is proportional to the velocity, then in effect a positive-
damping term results for positive values of L and negative damping for

Drain Drain Drain

F1e. 11.21. Four-way valves.

negative L. The coefficient of viscous damping is CsWL +/ (20/9)P.
Negative damping tends to decrease the valve stability and may cause
the valve to sing (high-frequency chatter). The total hydraulic forces
acting on the four-way valve of Fig. 11.20 are

F = —[(Kn + Ku) + CaW \/(20/g)P (L1 + Lo)plz  (11.49)

For the valve shown in Fig. 11.21a, L; > L. so that this valve has more
positive damping than the valve in Fig. 11.21b, in which Ly > L,. Thus,
the valve in Fig. 11.21a tends to be more stable than that in Fig. 11.21b.
The spring rate and damping caused by hydraulic forces should be taken
into account when a change in the external forces acting on a valve causes
a corresponding change in the position, as is the case in Figs. 3.12, 4.6,
and 4.9. When the valve is, in effect, positively or manually positioned,
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as is the case in Fig. 3.6, hydraulic reactions on the valve have a negligible
effect. :

11.7. Flapper Valves. Flapper valves have been developed in an
effort to eliminate some of the disadvantages of spool valves. For
instance, spool valves are quite expensive to manufacture because axial
tolerances between valve lands must be held very closely. Also, the
radial clearance must be kept as small as possible, and the corners of the
valve lands should be very sharp. If a particle of dirt gets stuck in the
small radial clearance, the valve becomes inoperative. The combination
of friction, hydraulic forces, inertia forces, changes in fluid viscosity due

A, = Px

[+ [+]
Vi
(a)
x -K,
——

(c)
F1a. 11.22. Flapper valve.

to changes in temperature, etc., can cause a spool-type valve to chatter,
or sing, under various operating conditions.

A flapper valve as shown in Fig. 11.22a is one in which small changes
in the position X of the flapper cause large variations in the controlled
pressure P; in the chamber. When the flapper is closed off so that there
is no flow, the pressure in the chamber is equal to the supply pressure P,
If the flapper is opened wide, the chamber pressure approaches the
ambient pressure P,. In the following analysis, it is assumed that the
fluid flowing through this system is a hydraulic, or an incompressible,

fluid. By attaching a spring-loaded bellows which is free to expand as
the chamber pressure changes, this becomes a position control device as
well as a pressure controller.

In Fig. 11.22b is shown a flapper valve, which serves the same purpose
as the three-way valve previously discussed. The following analysis
applies equally well to the systems of Fig. 11.22a and b.

Usually the area A, of the inlet orifice and the inlet pressure P, are
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held constant so that the pressure P, is controlled by the position of the
flapper only. Thus, with Ay and P, constant, the volume rate of flow
Q.. into the chamber is a function of the chamber pressure only. That is,

Qu = F(Ps) = Cady 2—5 (P, — Py (11.50)

where Cg, is the discharge coefficient for orifice Ao. Linearization of Eq.
(11.50) gives
an

% = 5p,|. P2 = —Cip: (11.51)
Q| _ —Cado2g/p
here = %20V A/PL . _ o
e aP, |; 2vVP,—P, | '

Because the ambient or discharge pressure is usually constant, the
volume rate of flow @, leaving the chamber is seen to be a function of the
position of the flapper X and also the chamber pressure P,.

= F(X,Py) = Co WX gpg P, (11.52)

where Cy, is the discharge coefficient for the flapper orifice and W is the
circumference of the flapper hole. Linearization gives

- TAR 0Q,
qo = a% iz + —a% . pz = C2x + C3p2 (11.53)
3 2
where 3% = Ca W \/-—p‘q P, = C,
0Q.| _ Ca WX \/29/p
and =247 VAP _ ¢
aP2 i 2 vV P2 1 ?

When equilibrium exists at the reference condition, @ia|i = Q.|; and the
variation ¢, — ¢, is the net rate of flow into or out of the chamber. This
net rate of flow is equal to the rate of change of volume of the chamber.
For Fig. 11.22q, the rate of change of volume is the effective area of the
bellows A4, times the velocity py, and for Fig. 11.22b this is the area A, of
the piston times the velocity py. Thus

G — 9o = Aspy (11.54)

The substitution of ¢, from Eq. (11.51) and ¢, from Eq. (11. 53) mto
Eq. (11.54) gives _
—Cox — (C1 + Ca)p: = Aspy - (11 55)

Flapper valves are frequently employed in applications where the load 1s
primarily a spring. For Fig. 11.22q, it follows that

P:Ai = K.Y ‘ '(‘11.’56)
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Similarly for Fig. 11.22b, the summation of forces acting on the piston is
PzAz bt P1A1 = KzY (1157)

Because P14, is a constant, linearization of Eq. (11.56) or Eq. (11.57)
gives the same result, i.e.,

HYDRAULIC SYSTEMS

— A2
y=F%. P (11.58)

The substitution of p; from Eq. (11.58) into Eq. (11.55) yields the follow-
ing over-all equation of operation,

Az(—K 1)23 100
= S 11.59
y Kx(1 + rp) ( )
here K Cs %
where 1 = m .
— A,? P
and T = &a(Cr £ 03 240
The block-diagram representation for
Eq. (11.59) is shown in Fig. 11.22¢. 20
The —K, indicates that, as X in-
creases, Y decreases. This fact is L Yo R— 7Y
evident from Fig. 11.22a or b because X, in.

as X increases, the pressure P; de-
creases and thus ¥ moves in the nega-

Fi1e. 11.23. Equilibrium curve of P,
versus X for a flapper valve.

- tive direction.

For most flapper
valves Cy and C; are very large so that the time constant » may generally
be regarded as negligible.

Equilibrium Operation. Equilibrium exists for a flapper valve when
the flow in is equal to the flow out, or

Qin - Qo = CdoAO J%g (Pl — Pz) - Cd,WX g,')gpz =0 (1160)
Solving for P, gives
_ P,
T 14 (CoWX/CaAo)?

In Fig. 11.23 is shown a typical plot of P, versus X for a flapper valve.
For steady-state or equilibrium operation, it follows from Fig. 11.22¢
that po = —Kyx. Thus, the constant — K is equal to the slope of the
curve of P; versus X, which as shown in Fig. 11.23 remains quite constant
over a considerable portion of the operating range. The fact that the
slope of this curve is equal to — K, may also be ascertained as follows:
For the implicit function F as given by Eq. (11.60), it follows from

calculus that
pr_ 0Py _ _ OF0X _ —Co _
r 8X  O8F/dP, C+C; !

where dF/0X = —C, and 9F/8P; = —(C1 + Cs).

P, (11.61)

(11.62)




236 AUTOMATIC CONTROL ENGINEERING

Although flapper valves find numerous applications in hydraulic
systems, they are more extensively used in pneumatic controls. A major
reason for this is that spool valves do not lend themselves to pneumatic
applications because of the excessive leakage of air that is a result of the
very low viscosity of air. Various types of pneumatic flapper valves are
treated in detail in Chap. 12.

11.8. Receiving Units. The most commonly employed receiving units
for hydraulic circuits are cylinders and motors. Cylinders may be single-
or double-acting. Only motors are discussed in the following, because
cylinders were included in preceding sections. '

Motors. When a pump is supplied with a high-pressure fluid, the
pressure force acting on the pistons, vanes, or gears causes the drive

O Stroke control

Rotating cylinder

-e— Low-pressure return
Fixed-
displacement c
- motor Motor shaft
Drive. -
shaft High pressure —»

F1a. 11.24. Hydraulic transmission.

shaft to rotate. This is the reverse process of supplying power to the
drive shaft of a pump to obtain a flow of high-pressure fluid. Thus,
hydraulic motors are basically pumps which are supplied with a flow of
high-pressure fluid which transmits power to the drive shaft. When
pumps are used as motors, it is usually necessary to modify the design to
reduce undesirable unbalanced forces.

In Fig. 11.24 is shown a hydraulic transmission in which the receiving
unit is a fixed-displacement motor. Hydraulic transmissions are com-
monly used as the power element for hydraulic servomechanisms to
provide a very fast and accurate control of speed.'? As is shown in
Fig. 11.24, a hydraulic transmission consists of a variable-displacement
pump which supplies high-pressure oil to a fixed-displacement motor.
The direction of rotation is reversed by moving the stroke adjustment to
the other side of its neutral position.

The operational representation for this hydraulic transmission is

1 Blackburn, Reethof, and Shearer, op. cit.
* Gibson and Tuteur, op. cit.
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obtained as follows: The ideal volume of flow ; coming from the pump is
Q: = naiX K, X (11.63)

where Q; = ideal pump flow, in.3/sec

n = number of pistons in pump

a = area of each piston, in.2

6,/2x = pump speed, rps

X = length of stroke, in.
Because of the pressure drop across the pistons in the pump, a portion of
this ideal flow leaks back past the pistons. For a given pump, the
leakage flow Q. is proportional to the pressure P developed by the pump.
That is,

Q.= K.P (11.64)

Fora ﬁxed-dlsplacement motor, the volume rate of fluid flow Q, delivered
to the motor is

Q» = Db (11.65)

where D., is the volumetric displacement of the motor per radian and 4.,
is the motor speed (radians per second). The mechanical power devel-
oped by a motor, T'n0n, is equal to the hydraulic power delivered to the
motor, PQ,.

PQ. = Trnbn (11.66) .

By substituting @, from Eq. (11.65) into Eq. (11.66), it follows that the
pump discharge pressure P is proportional to the motor torque T,
that is,

P = Tn : (11.67)

1
D,,
Substitution of the preceding result into Eq. (11.64) shows that the
leakage flow Q.. is also proportional to the motor torque T,

Q = 5% T - (11.68)

In addition to leakage through the pump, the net volume rate of flow
Qn delivered to the motor is less than the ideal volume flow Q;: displaced
by the pump because of compressibility effects.

Qr=Q—-QL—Q. (11.69)

Compressibility of a hydraulic fluid may usually be considered negligible
except when the fluid is at a very high pressure and when there is a large
quantity of fluid in the system, The change in volume AV, of a volume
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of fluid V is given by the equation
AV, = % AP (11.70)

where B = bulk modulus of the fluid. The equivalent compressibility
flow is the rate of change of volume AV, with respect to time.

lim AV, _VdP _ V dT. _ K. -
Q= At—»o—At——'E—(ﬁ'—m—d‘t——mme (11.71)

where K, = V/B. Substitution of Eqs. (11.63), (11.65), (11.68), and
(11.71) into Eq. (11.69) gives

Dubn = K, X — %—L T, — gf pTh (11.72)

If the load on the motor shaft consists of inertia, viscous damping, and an

arbitrary load torque, ,
Tw=(p+ Con+ Tt (11.73)

Substitution of T, from Eq. (11.73) into Eq. (11.72) and solving for
6., yields
6 = DK, X — (K. + Kp)T1 (11.74)
b Kch2 + (Kch + KDJ)P + (Dm2 + KLCV) )

After making the coefficient of the p? term unity by factoring K.J out
of the denominator, the natural frequency w. for the second-order
characteristic equation is found to be

_ ’sz + KLCv
Wp = KJ — (11.75)

and similarly it follows that

_{(C. | K¢
Qwn = (7 + K-) (11.76)

whence the damping ratio may be evaluated.

The preceding hydraulic transmission is primarily a speed control
device. The position of the stroke control lever determines the flow
to the fixed-displacement motor and thus controls the speed of rotation.
Slight variations in speed result because of leakage and compressibility
effects.

Numerous circuits are available for utilizing fluid motors. For exam-
ple, if a fixed-displacement motor is supplied from a constant-pressure
power supply, a constant torque is exerted on the motor. Thus a con-
stant-torque drive results. The addition of a pressure-regulating device
to vary the pressure permits torque control. In a similar manner, a
constant-horsepower drive may be obtained by supplying a variable- -
displacement motor with a fixed-displacement pump.



CHAPTER 12

PNEUMATIC SYSTEMS

12.1. Introduction. Pneumatic systems are distinguished from hy-
draulic systems in that the fluid medium for pneumatic systems is a
compressible fluid (usually air) and that for hydraulic systems is an
incompressible liquid. An advantage of using air as the working medium
is its availability. After completion of its work cycle, the air may be
exhausted to the atmosphere so that there is no need for return lines as
there is with hydraulic fluid. Most hydraulic fluids are flammable so
that leaks in such systems present fire hazards. No such danger results
when air is employed as the working medium. Because the viscosity
of hydraulic fluids changes considerably with temperature, variations
in temperature of the working fluid have a marked effect upon the
performance of such systems. The change of viscosity of the working
medium used in pneumatic systems is usually negligible.

A fundamental advantage of hydraulic systems is that the incom-
pressibility of the fluid results in positive action, or motion, and faster
response. With pneumatic systems some of the flow is used to change
the density of the fluid (i.e., to compress the fluid) so that pneumatic
systems are characterized by longer time delays and less positive action.
These disadvantages are diminished by the use of higher operating
pressures.

The analysis of pneumatic systems is similar to that for hydraulic
systems. The main difference is that the mass rate of flow of the fluid
must be considered in pneumatic systems, whereas the volume rate of
flow suffices for hydraulic systems.! It is not uncommon to have the
same type of component used for both high-pressure pneumatic systems
and hydraulic systems. To account for the increase in volume at the
low-pressure outlets of a pneumatic component, the outlet ports are
larger than the inlet ports.

12.2. Pneumatic Power Supplies. Although there are many different
forms and kinds of air compressors used to supply pneumatic power,

1J. F. Blackburn, G. Reethof, and J. L. Shearer, “Fluid Power Control,” Tech-
nology Press, M.I.T., Cambridge, Mass., and John Wiley & Sous, Inc., New York,
1960.
239



240 AUTOMATIC CONTROL ENGINEERING

usually such compressors may be classified as centrifugal, axial-flow, or
positive-displacement compressors.

In Fig. 12.1 is shown a centrifugal-type air compressor. The air
enters at the center, or eye, of the impeller. By centrifugal action the
impeller throws the fluid into the volute, whence it goes to the diffuser.
The fluid leaving the impeller has considerable kinetic energy, which is

Volute

Fi1e. 12.1. Centrifugal compressor.

Inlet guide Exit guide
vanes vanes

Tapered \—-Runner blades Fixed guide
runner vanes

Fi1c. 12.2. Axial-flow compressor.

gradually changed to static pressure as the fluid travels through the
volute and the diffuser. Such compressors deliver relatively small
amounts of flow. The discharge pressure from a centrifugal compressor
seldom exceeds 50 psia.

An axial-flow type of compressor is shown in Fig. 12.2. The annular
area at the inlet to an axial-flow compressor is much larger than the.
relatively small area at the eye of the impeller of a centrifugal compressor.
Thus, an axial compressor can deliver much more flow than a centrifugal
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compressor. The blades that are attached to the rotor of an axial
compressor impart kinetic energy to the fluid, and the fixed blades in
the housing act as diffusers to change this kinetic energy to static pres-
sure. Because the fluid is continually being compressed as it flows
through the compressor, the blades gradually become smaller to account
for the decrease in specific volume of the fluid. The discharge pressure
for such compressors is usually less than 100 psia.

Positive-displacement compressors are used to supply pneumatic
power for high-pressure systems. In Fig. 12.3a is shown the PV diagram
for an ideal positive-displacement compressor which has no clearance.

P P
3 2 2? 3 2 27,

14 v
(@) ®
Fic. 12.3. PV diagram for ideal positive-displacement compressor.

Air is brought into the cylinder as indicated by the line 0-1. If the
compression is accomplished isothermally (i.e., the temperature of the
air remains constant), then the line 1-2 is the path of compression. The
equation for this line is

PV = constant (12.1)
To have the compression occur isothermally, the heat due to compression
must be continuously extracted. Actually, the cylinder, or housing,
around the piston insulates the fluid so that the actual compression
process is nearly adiabatic (i.e., no heat is transferred). The equation of
adiabatic compression which follows the path 1-2’ is

PV14 = constant (12.2)

When the discharge pressure P, = P, is reached, the discharge valve
opens and air is expelled from the cylinder until the end of the stroke
as indicated by point 3. Most compressor discharge valves are pressure-
operated, so that when the air is compressed to the desired discharge
pressure, the exhaust valve is forced open.

The total work of compression is equal to the area enclosed by the
closed path of the compression cycle. The shaded area 1-2/-2-1 in
Fig. 12.3a is the additional work needed for adiabatic compression as
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compared with isothermal compression. By using interstage cooling as
represented in Fig. 12.3b, the ideal isothermal compression is more
closely approximated. This requires the use of a multistage compressor
in which the air is first compressed to some intermediate pressure in the
low pressure stage. Then the air is directed through an intercooler
before it enters the high-pressure stage to complete the compression.
For pressures of 500 psia or higher, three or more stages of compression
may be used. To obtain clean, dry air, an intake filter and dehydrator

are used. The filter removes for-
) eign particles, dust, and dirt, while
the dehydrator removes excess
moisture.

12.3. Flapper Amplifier. When
the flapper valves of Fig. 11.22a and
b are supplied with high-pressure
air, pneumatic flapper amplifiers

80

60 result. The basic operation of a

5 pneumatic amplifier is the same as
40 that for the corresponding hydraulic
amplifier. That is, the pressure P,

in the chamber is controlled by the

20 position X of the flapper. When X
B=1471 is zero so that the flapper is closed,
the pressure P, is equal to the sup-

0000z Gooi ooos~ Plv pressure Pi.  When the flapper

X, in. is opened wide so that X is large, P,
approaches the ambient pressure P,.
A typical graph of P, versus X is
shown in Fig. 12.4. Small changes
in the input motion X cause large changes in the controlled pressure P..
A position controller is obtained by providing a spring-loaded bellows or
piston.

The procedure used to obtain the operational form of the differential
equation for this pneumatic amplifier is similar to that used for the
hydraulic amplifier, with the exception that, because of compressibility
effects, the mass rate of flow must be considered rather than the volume
rate. With a constant supply pressure P, and fixed area of inlet orifice,
Ag, the mass rate of flow into the chamber, M,,, is a function of the
chamber pressure P; only. Thus,

FiG. 12.4. Graph of P, versus X for pneu-
matic flapper valve.

Min= F(Pz)

oM. (12.3)
and m, = _Osz ’ P2 = —C:p:



PNEUMATIC SYSTEMS 243

In Sec. 12.7, equations for the flow of a compressible fluid through an
orifice are developed, whence the corresponding partial derivatives may
be evaluated. It is also shown how to determine the equilibrium or
- reference operating conditions such as are illustrated by Fig. 12.4.

The mass rate of flow out from the chamber, M,, is a function of X and
P 2. Thus

M, = F(X,P,)
oM, M, 12.4
and ma=ﬁ—ix+a—P2ip2=sz+Cap2 ( )

The change in mass w of air in the chamber is the integral of m;, — m,,
that is,

w =GPz = Cz = Capy (12.5)
p
From the equation of state, the pressure P; in the chamber is
P, = WIET? (12.6)
2

where V, is the volume of the chamber and T, is the stagnation tempera-
ture of the air in the chamber. For the usual case of adiabatic flow, the
stagnation temperature T is equal to the stagnation temperature T,
of the supply, which is constant. Linearization of Eq. (12.6) yields
the following expression for the variation p: of pressure in the chamber:

_ 9P|, . 9Py
P: = ow av.,
The change of pressure in the chamber depends upon the change of mass

w and the change of volume v,. By use of Eq. (12.6) to evaluate the
partial derivatives, it follows that

w -I- Ve = C4w —_ 052)2 (127)

i v

aPy| _ RTy| _
Wk~ Ve O (12.8)
0P| _ —WRTs| _ =Py _ _

vl = Ve L=V, LT Cs (12.9)

The change in volume »; of the chamber is equal to the area A, times the

change in length y. That is,
vy = Azy ’ (1210)

The change in the pressure force p.4. is equai to the change in spring
force Koy. . Thus
p2d: = Koy ' (12.11)

The over-all relationship between the input z and output y is obtained
by substituting w from Eq. (12.5), v, from Eq. (12:10), and p, from
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Eq. (12.11) into Eq. (12.7). Thus

. Az —K 1

Y= Ki+mo”
where K, = Cz/(Cl + Ca) and 7 = (1 + CaAz’/Kz)/[(Cl + 03)04]
Equation (12.12) has the same general form as Eq. (11.59), and thus the
block-diagram representation for this pneumatic amplifier is the same
as that for the corresponding hydraulic amplifier drawn in Fig. 11.22¢.
The constant — K, is the slope of Fig. 12.4 at the reference operating
condition. Although r is slightly larger for a pneumatic amplifier than
for a corresponding hydraulic amplifier, it is still extremely small and is
generally regarded as negligible.

12.4. Two-stage Amplifier. For the control of large industrial proc-
esses where it is necessary to have large quantities of a controlled pneu-
matic pressure, it is customary to use a two-stage amplifier as shown in
Fig. 12.5a. The first stage of amplification consists of a flapper-type
amplifier in which the pressure P, is controlled by the flapper position X.
The controlled pressure P; determines the position Y of the metering
valve for the second amplifier. The second stage of amplification is capa-
ble of handling large quantities of flow. This second unit is called an
air relay.

The actuating signal e coming from the comparator is the input signal
for the two-stage controller shown in Fig. 12.5a. An increase in the
actuating signal moves the top of the error link to the right, and thus
the flapper also moves to the right. This in turn decreases the pressure
P,, which causes the metering valve to move up to admit more flow to
the main part of the system. If the actuating signal decreases, then
the metering valve moves down to block off the supply flow and open
wider the bleed passageway. Bleeding off more flow to the atmosphere
in turn causes P, to decrease. By proper contouring of the metering
valve, a linear relationship may be obtained between the actuating
signal e and the output pressure P,.

The first stage (i.e., flapper amplifier) for a two-stage amplifier is
usually such that the time constant r is negligibly small, in which case
Eq. (12.12) becomes

(12.12)

== (—Kpz (12.13)

Because of the compressibility of air, a certain time lag is associated with
the change of pressure in any portion of the system. However, pneu-
matic systems are generally proportioned so that the time constants,
associated with certain portions are negligibly small, and thus the larger
time constants have the predominant effect on the system behavior.
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Fre. 12.5. (a) Two-stage amplifier; (b) block diagram for two-stage amplifier; (c)
block diagram for two-stage amplifier in which K’ = K,K.4 2/2K,.

The position ¥ of the air relay determines the pressure P,, or P, = F(Y).
Because the air relay handles a large quantity of flow, the pressure P,
changes almost instantaneously for changes in the position ¥ of the
metering valve, and hence there is a negligible time delay associated with
this device. Thus, the equation of operation is

Po = — Koy (12.14)




246 AUTOMATIC CONTROL ENGINEERING

where —K, = 8P,/dY |, is the slope of the curve of P, versus y for the

air relay.
For the error linkage

r=2_2 (12.15)

The summation of forces acting on the feedback bellows gives

K;Z = A,P,
Y
or e = 2w (12.16)

From Eqgs. (12.13) through (12.16), the block-diagram representa-
tion for this controller is drawn as shown in Fig. 12.5b. By letting
K’ = K\K.A,:/2K; the block diagram of Fig. 12.5¢ results. The rela-
tionship between the output p, and the input e for this controller is

KI

Do = i—m e (12.17)

This is recognized as a proportional controller because
KI
G =
@) = TR/

is a constant. For the usual case in which K’A;/K,>> 1, the preceding
expression reduces to

__ K _K,
P =K(4,/K)° ™ 4,

The relationship given by Eq. (12.18) can be deduced direetly from a
closer examination of Fig. 12.5¢. The position # changes only a very
small amount to produce a large change in P,, which in turn controls
P,. Because of the very small motion at z, this point may be considered
as a fixed pivot point, or

(12.18)

z=ce (12.19)

The substitution of z = (4;/K,)p, into Eq. (12.19) gives the result of
Eq. (12.18). )
Proportional plus Derivative Action. The proportional controller of
Fig. 12.5a is changed to a proportional plus derivative controller by
inserting a restriction between the outlet line P, and the feedback bellows,
as is shown in Fig. 12.6a. The area of this restriction is small so that the
time constant associated with changing the feedback pressure P; in.the |
bellows is appreciable. The equation relating the pressure P; in this
bellows to the pressure P, on the other side of the restriction is obtained
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as follows: For a given sized restriction at the input to this bellows, the
mass rate of flow, M, going to the bellows is a function of the pressure P,
and the pressure P, in the bellows.

M = F(P,P))
Linearization gives
oM oM
m=3p.|. P + AR Cipo — Caps (12.20)
where M /aP,| = C: and 9M/aP; L = —C, The fact that C, is equal

to C: is ascertained as follows: Suppose that p, and p, are changed by the
same amount so that there is no resulting pressure drop and no flow

o—>e
e + K’ Po -
> x ’ (2)
Ag/K¢

Ky 1+ P

ooo Z
2 ]— An By ®

[eTeZo]

?_I 7 J ~—Restriction
0
Py > system

(a)
Fia. 12.6. (a) Two-stage amplifier with proportional plus derivative action; (b) bloek
diagram for two-stage amplifier with proportional plus derivative action.

(m = 0) across the restriction. From Eq. (12.20), it follows that C,
must equal C; to substantiate the known result that m is zero. The
pressure P, is obtained from the equation of state, i.e.,

(12.21)_

where V; is the volume of the bellows and T is the corresponding tem-
perature. The change of pressure p; is

' Pr=ow|® ™ a7,
The change in volume v, is equal to the effective area of the bellows
times the displacement 2.

Uy = Ca’w - C4I)f (12.22)

i

vy = Ayz ' (12.23)

A force balance on the feedback bellows gives 4,P; = K,Z or for small
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variations . .
Asps = Kpz (12.24)

The over-all relationship between z and p, is obtained as follows: Sub-

stitute w, which is obtained by integration of Eq. (12.20), substitute

vy from Eq. (12.23) into Eq. (12.22), and then eliminate p, by use of

Eq. (12.24). Thus

_ (4/K)p,

= Tt (12.25)

where Ty = (1 + C4A/’/K)/0203

This relationship between z and p, is the only difference between the
proportional controller and the proportional plus derivative controller.

4

—

—_

4

Restriction~] |
Fy —>To system
(a)
e 3 K b,
(z) KIP
1+1‘,p *
(b)

Fi1a. 12.7. (a) Two-stage amplifier with proportional plus integral action; (b) block
diagram for two-stage amplifier with proportional plus integral action.

Thus, the insertion of the block diagram for Eq. (12.25) into the feed-
back path between p, and z of Fig. 12.5¢ gives the over-all block diagram
for the proportional plus derivative controller shown in Fig. 12.6b. The
over-all equation of operation for this controller is

_ K'’e _ K'(1 + 7;p)e
P = T ¥ ®A/R)/ A +7p) (A + KA/K) + 1

Because K’ is very large, 1 + K'A;/K; = K'A;/K; > 1, in which case

(12.26)
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Eq. (12.26) becomes e
S C pe= (Ky/Ap) (1.4 7p)e (12.27)
° 1+ [/(K'A;/K)lp ’

Because K'A;/K;> 1, the time constant in the denominator may be
regarded as negligible. Thus

po=let Kf’f (12.28).
f

The preceding expression shows the proportional plus derivative action
of this controller.

Proportional plus Integral Action. The proportional controller of
Fig. 12.5a is changed to a proportional plus integral controller by the
addition of a second bellows as shown in Fig. 12.7a. The effective area
A, of this bellows is the same as that of the feedback bellows. Because
the bellows on the left provides the integrating action, it is called the
integrating bellows. The pressure inside of this bellows is P;. The
feedback bellows on the right has no restriction, so that its pressure is
always P,. The equation of operation for this proportional plus integral
controller is obtained by applying the method of analysis just described
for the proportional plus derivative controller. Thus

oM oM
m‘a_R,.-”"'"EF} pr= Clpo— Czpl
where C,=C,
_ 9P| . 0Py
Pr=aw Y v, | = Cw - Car (4999
where Pr = ER—TI
Vi
vr = —A,z
and (po — p1)A; = K;2

From the preceding expressions, the over-all relationship between z and ’
Do is found to be
- _Km
. z = T+ 77 Do L Ok (12.30)
_As _ /8y
aox, 4 =",

Figure 12.7b shows the over-all block diagram for this controller, in

which Eq. (12.30) is seen to describe the operation of the internal feed-
back elements. The over-all equation of operation is

K'e K'(1 + =pe
o = 12.
P = I ¥ KK/ ¥ 1+ @+ KKyp (23D
Because the time constant for the denominator, 7, + K'Kr = K'K; > 1,

then 1+ (r, + K'Kr)p is closely approximated by K'Krp. Thus Eq.

where K; =
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(12.31) becomes

LA ) Kmp
The first term on the right-hand side of Eq. (12.32) provides the inte-
grating effect, and the second term contributes the proportional action.
By adding derivative action to this proportional plus integral con-

troller, a proportional plus integral plus derivative type of controller
is obtained, as is shown in Fig. 12.8.

_d+mpe 1 e+ 2 Tﬂ’ (12.32)

Q-—>-@

To system —>

F1a. 12.8. Proportional plus integral plus derivative controller.

12.6. Pneumatic Controllers (Force Type). A force-type pneumatic
controller operates only on pressure signals, and so it is necessary to
convert the reference input and controlled variable to corresponding
pressures. Simple adjustments make it easy to modify the operating
characteristics of a force-type controller. Such industrial controllers
are sometimes called “stack controllers.”!?

In Fig. 12.9¢ is shown a force-type controller which has proportional
action. The subscripts refer to the signal to which the pressure corre-
sponds, i.e.,

P, = pressure corresponding to reference input

P, = pressure corresponding to controlled variable

P, = pressure corresponding to output of controller

P; = pressure corresponding to an internal-feedback signal

The operation of the controller shown in Fig. 12.9a may be summarized
as follows: An increase in the pressure P, which is proportional to the

1 D. P. Eckman, “Automatic Process Control,” John Wiley & Sons, Inc., New York,
1958.

tJ. E. Gibson and F. B. Tuteur, “Control System Components,” McGraw-Hill
Book Company, Iuc., New Yark, 1958.
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reference input causes the valve stem to move down to close off the
bléed restriction for P,. This in turn causes the output pressure P, to
increase.

To obtain the equation of operation for this controller, first sum up
the forces acting on the pilot stem.

P/Az + P,-(Al - Az) - P.,(A] - Az) - PoAz = 0 (1233)
or (P, — P)(Ay — Ay) + P;A; = P, A, (12.34)

Outlet
restriction

* Inlet

r restriction
To
system
1 K
4,
P + e + 1 D,
A-A, - + >
- + 2
P
A, e o)
(c) v

Fie. 12.9. (a) Force-type controller with proportional action; (b) block diagram of
force balance for force-type controller; (c) over-all block diagram for force-type
controller, .
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The block-diagram representation for Eq. (12.34) is given in Fig. 12.9b.
This shows that the comparator which produces the actuating signal e
is automatically incorporated into this controller. The two-stage ampli-
fier was separately excited by the actuating signal e. To complete the
feedback between the output signal P, and the feedback signal Py, it is
necessary to determine the relationship between p, and p;. On the

To
= system
A;‘Az e + _‘_:._ po'
+, 2
4,
l14+7p |
(b)

F1g6. 12.10. (a) Force-type controller with proportional plus integral action; (b) over-
all block diagram for force-type controller with proportional plus integral action.

assumption that there is a. negligible time lag between ps and p,, it
follows that

©pr = Cipo (12.35)
P
where C, = aP: !

Because p; is less than p,, the value of C; is less than 1. The completed
block diagram is shown in Fig. 12.9¢c. Because of the one linearized rela-
tionship, Eq. (12.35), the entire block diagram must be linearized. The
over-all relationship between p, and ¢ is

_ (1/4z)e _ 1
Pe=1-0C. T A4,0-0C)

This is recognized as the operating equation for a proportional con-

e=K'e (12.36) -
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troller. The value of K" increases as C, approaches unity. This is
accomplished by making the inlet restriction to the P, chamber Jarge
compared with the outlet restriction.

This controller is converted to a proportional plus integral controller
by closing off the outlet restriction as shown in Fig. 12.10a. For this
case, it may be demonstrated that

Do
= 12.
P = Tk (12.37)
The block-diagram representation for this controller is gwen in Fig.
12.10b, from which it follows that

= (I/Az)e — 1 1 + 1'117
Pe = T1/0 + 7p) P
1 ) . .
- (m + A_,ﬁ) o (12.38)

The preceding expression describes the operation of a proportional plus
integral controller.

Caldwell! has compiled a table of numerous force-type controllers
which may be used to obtain proportional plus integral action, propor-
tional plus derivative action, or proportional plus integral plus derivative
action. Williamson? has designed a compact “plug-in” type of unit for
obtaining compound action.

12.6. Pneumatic Receiving Units. A commonly employed receiving
unit for position control is the pneumatic actuator shown in Fig. 12.11a.
The pressure force acting on the diaphragm is 4P, where A is the area
of the diaphragm. For the general case in which this actuator is used to
position a load of mass M, coefficient of viscous damping C, and spring
constant K and upon which an external load F;, acts it follows that

AgP, = (Mp*+ Cp + K)Y + F,,
Because the preceding expression is linear, for small variations

Aapo = (Mp* + Cp + K)y + f1
Adpo - fL
Do — JL 12.39
Mp*+Cp+ K : - )
A typical control system utlhzmg an actuator is shown in Fig. 12.11b.
Thie reference input signal is z, and the controlled variable is y. The
error signal e could be the input signal to a two-stage pneumatic amplifier.
The over-all block diagram for such a controller is given in Fig. 12.11c.

! W. I. Caldwell, Generating Control Functions Pneumatically, Control Eng., vol. 1,
no.'1, p. 58, 1954.

* H. Williamson, Theory and Design of Compound Action Pneumatic Controllers,
Trans. Soc. Instrummt Technol., vol. 6, no. 4, p. 153, 1954.

or y=
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O\

Diaphragm

VIIII/IIIIIIIII/

Controller

1
| Mp2+Cp+K

Y

(c)

F1a. 12.11. (@) Pneumatic actuator; (b) pneumatic position control system; (¢) block
diagram for pneumatic position control system.

Controller

Drain Supply Drain

Fie. 12.12. Pneumatic four-way valve positioned by a pneumatic controller.

~ Single- or double-acting cylinders similar to the hydraulic cylinders
discussed in Chap. 11 are also frequently employed as pneumatic receiv-
ing units. Actually, a pneumatic actuator is basically a single-acting
cylinder in which the piston has been replaced by a diaphragm. In
pneumatic systems, as was the case with hydraulic systems, double-
acting cylinders are usually directed by a four-way valve. However,
the four-way valve may in turn be positioned by the output pressure P,
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of a pneumatic controller, as is illustrated in Fig. 12.12. The analysis
of a pneumatic four-way valve and cylinder combination is similar to
that for the corresponding hydraulic unit with the exception that mass
rate of flow must be considered rather than volume rate of flow. When
the variation of pressure is small, compressibility effects become negligi-
ble. In this case, the analysis of the pneumatic system is the same as
that for the corresponding hydraulic system.

Another type of receiving unit is the pneumatic motor. . Although
theoretically it should be possible to utilize a gear-type or piston-type
motor, only the vane-type motor is now commercially available. A
characteristic feature of a vane-type motor is that the torque developed

N; P,
m=+Q': Controller 0 Motor 1!‘ J (Load]
- i
|
I

Fic. 12.13. Pneumatic speed control system.

by the motor is proportional to the supply pressure P, and is independent

of the speed of rotation, i.e., .
T = KP, (12.40)

This result is not astonishing, because a force balance on the blades
shows clearly that the torque depends only on the pressure that is acting
against them. The use of such a motor is illustrated in the speed control
system shown in Fig. 12.13.

12.7. Equilibrium Flow through Series Restrictions. Many pneumatic
components use two orifices in series to obtain a controlled pressure in
the chamber between the orifices. If the component is available, the
chamber pressure may be experimentally determined for various operating
conditions. However, in the initial design stages, before any parts have
been manufactured, it is desirable to be able to predict the value of the
chamber pressure. This may be accomplished by use of the nondimen-
sional family of curves shown in Fig. 12.14a. As is illustrated by the
insert above Fig. 12.14a, the pressures Py, Py, Ps, Py, and P; represent the
inlet pressure, throat pressure at first orifice, chamber pressure, throat
pressure at second orifice, and discharge pressure, respectively. The
symbol A4, is the area of the first orifice times the coefficient of discharge,
‘and A, is the area of the second orifice times the coefficient of discharge.

Usually, the over-all pressure ratio P;/P; is known, and also the ratio
As/A,, is known, so that the ratio P;/P; can be found from Fig. 12.14a.
The value of the chamber pressure P, is then computed as the product
of the ratio P;/P, and the value of the inlet pressure P,. In using
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Fig. 12.14a, it is necessary to use absolute pressures. - Because these are
nondimensional curves, any consistent set of units may be used.

The derivation of this nondimensional family of curves is accomplished
as follows: By assuming that the fluid is a perfect gas and that the kinetic
energy at the inlet is negligible compared with other terms in the energy
equation, the mass rate of flow through the first orifice is

_ AP k P, Py )\ G017 %
= Vr el @) - ()T e

where 7', = stagnation temperature at inlet

¢ = gravitational conversion factor

k = ratio of specific heat at constant pressure to that at constant

volume

R = gas constant
By replacing the subscript 1, in Eq. (12.41) by 2, and the subscript 1 by
2, the equation for the mass rate of flow through the second orifice is
obtained. For equilibrium to exist, the mass rate of flow in equals that
out, so that

APy A, P, .
== Byt = == Bk 12.42
VT, ' VT (242
2/k k+1)/k
where B, = (—Igﬂ) (?)
1 1

B P2' 2/k P2¢ (+1)/k
=) )T

Because there is little time for heat transfer to take place, the flow may be
considered to be adiabatic so that 7y = T,. Thus Eq. (12.42) becomes

A P\B% = A, P,By* (12.43)

In the following analysis, it is assumed that the fluid is air, for which
k = 1.4, and that the critical pressure ratio is Ps/P; = P3;/P; = 0.528.
By using the appropriate value of & and the critical ratio, this analysis
is applicable for any gas.
. When sonic flow exists at the first orifice, B, = 0.259 and similarly
for sonic flow at the second orifice B, = 0.259. Thus, for sonic flow at
both orifices Eq. (12.43) reduces to

Po_ 1
Py Ay/A,

When sonic flow exists at the first orifice,

(12.44)'

P,
BS < 0.528
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Above the line Py/P; = 0.528 shown in Fig. 12.14b, subsonic flow exists
at Ay, and below this line sonic flow exists at A,

The equation for the line of separation between subsonic and sonic
flow at A, is obtained by noting that the critical ratio is P;/P; = 0.528;
thus

P, 1 1

P, ~ P/P)(P:/Py) ~ 0.528(P:/Py) (12.45)

The curve defined by the preceding expression is shown in Fig. 12.14b.
To the right of this curve sonic flow exists at A, and to the left of this
curve subsonic flow exists at As. The regions in which each of the four
possible combinations of sonic or subsonic flow may exist at the first
and second orifices are shown in Fig. 12.14b, that is,

Case 1 sonic flow at both orifices

Case II  subsonic flow at the first orifice and sonic at the second
Case III sonic flow at the first orifice and subsonic at the second
Case IV  subsonic flow at both orifices

For case I, from Eq. (12.44) it follows that the lines of constant values
of A, /A, are horizontal straight lines as shown in Fig. 12.14a.
For case II, P, = P,, and B: = 0.259, so that Eq. (12.43) reduces to

Pp1 _ 1
P.B%* ~ 0.259(42/44)

For a given area ratio A,/A;, there is but one value of P/P; which
makes the left-hand side of Eq. (12.46) equal to the right-hand side.
Thus, for case I, lines of constant A,/A,, are also horizontal.

By applying these techniques to case III and case IV, the complete
family of curves shown in Fig. 12.14a is obtained. This method of
analysis may be extended to determine equilibrium flow conditions for
three or more orifices in series.!

Equation (12.41) is in an awkward form for computing partial deriva-
tives. However, for the case of sonic flow, this expression reduces to

_ 0.528
VT
where the preceding expression has units of inches, pounds, degrees

Rankine, and seconds. For the usual design case in which the stagna-
tion temperature of the inlet air is 60°F or 520°R, then M, = 0.00744 . P,.

(12.46)

M, AP, (12.47)

1The author wishes to express his appreciation to Mr. Stanley Best, Chief of
Analysis, Hamilton Standard Division, United Aircraft Corporation, Windsor Locks,
Conn., for his fine comments and suggestions concerning the development of the pre-
ceding method for determining equilibrium flow conditions.
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For the case of subsonic flow P;, = P, Eq. (12.41) may be approxi-
mated by noting that a plot of the function B, versus (Py — P3)P,/P,? is
very nearly a straight line. The slope of this line is such that

- 0.261(Py — P3) Py

B: P (12.48)
Substitution of the preceding approximation into Eq. (12.41) gives
2.
M1 = \/—976T;A1, '\/0261(P1 b Pz)Pz
= 1%, VB = PP, (12.49)
v T
where %’ k—fi = 2.06 when units of inches, pounds, degrees Rankine,

and seconds are employed. For a stagnation temperature of 520°R,
Eq. (12.49) is
M, = 0.01464,, \/ (P, — P2)P; (12.50)



CHAPTER 13

ELECTRICAL SYSTEMS

13.1. Introduction. The availability of electrical power and the ease
of transmitting signals via wires or microwaves are desirable aspeets of
electrical equipment. The characteristics of an electrical component
may usually be altered by a simple adjustment such as changing the size
of a resistor or a capacitor, as was the case for the general-purpose analog
computer discussed in Chap. 8. Thus, electrical equipment tends to be
versatile and convenient to use.

This chapter discusses the characteristics of electrical components
which are frequently used in automatic control systems. It is shown how
to obtain the operational form of the differential equation for commonly
used electrical devices such as motors, generators, vacuum tubes, transis-
tor amplifiers, etc.1—3

13.2. D-C Motors. A major reason for the use of d-c machines in
electromechanical control systems is the ease with which speed can be
controlled. The polarity of the applied voltage determines the direction
of rotation. Also d-c machines are capable of providing large power
amplifications.

The field and armature windings of d-¢c motors may be shunt-connected,
series-connected, compounded, or separately excited. The motors used
in control systems are generally separately excited. There are two types
of separate excitation, field control with fixed armature current, and arm-
ature control with fixed field.

Field Control. A separately excited motor in which the armature
current I, is maintained constant is shown in Fig. 13.1a. The constant
current I, may be supplied by a d-c generator or from an a-c line. The
latter method requires the use of transformers and rectifiers to obtain
the proper rectification. The voltage E; applied to the field is obtained
from the output of an amplifier in low-power application or from a d-c

1J. E. Gibson and F. B. Tuteur, “Control System Components,” McGraw-Hill
Book Company, Inc., New York, 1958,

2N. R. Ahrendt and C. J. Savant, “Servomechanism Practice,” 2d ed., McGraw-
Hill Book Company, Inc., New York, 1960.

3J. G. Truxal, “Control Engineers’ Handbook,” McGraw-Hill Book Company,
Inc., New York, 1958.
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generator when greater power is needed. In the field circuit, the resist-
ance of the windings is R,, and the inductance is designated by L,.
The torque T developed by a motor is proportional to the product of the
* armature current I, and the magnetic flux ¢ of the field.

T = Ki¢l, (13.1)

where K is a constant for any motor and depends upon the total number
of armature conductors, the number of field poles, etc.

‘——I o (constant)
Ei

TL

e

Ef Kmla/Ry + N 1 [
l+rfp Jp
(&)

F1a. 13.1. Field-controlled d-c motor.

A typical curve of flux ¢ versus field current I, is shown in Fig. 13.2.
When the field current I, becomes great enough to cause the iron to
saturate, the flux ¢ no longer increases linearly with the current. Motors
used in control systems usually operate over
the linear portion of this curve, in which 4{¢

case
¢ = K,I, (13.2)

where K is the slope of the linear portion of
the curve as shown in Fig. 13.2. The sub- K
stitution of the preceding result into Eq. 2
(13.1) yields !

T = K\K.I.I, = K,I.I, (13.3)

where K,, = KiK.

If the moment of inertia of the armature
is J, the coefficient of viscous friction C,,
and the load torque 7'z, from a summation of torques acting on the arma-
ture it follows that

Iy

Fi1a. 13.2. Plot of flux vs. field
current.

T=Cop+Jpo+ T, _ (13.4)
where 6 is the angular position of the armature, or motor shaft.
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The equation for the field current I, is obtained from the equivalent
field circuit of Fig. 13.1a.
I, E, E;

B +Lp RO+

where 7; = L;/R; is the time constant of the field circuit.
Substituting T’ from Eq. (13.4) and I, from Eq. (13.5) into Eq. (13.3)
and solving for @ gives

(13.5)

1 (K.I./R;)E; ]
0 = -7 .
p(C, + Jp) [ I+p - (13.6)
Multiplication of the preceding expression by p gives the angular velocity
6 = pé,
_ 1 (Kmlos/B)E;
0 = C. T+ Jp [ 1+ TL (13.7)

Generally, the damping C, is negligible, so that the block-diagram
representation for the speed of this field-controlled d-c motor is as
shown in Fig. 13.1b.

Lo R,

AN '
7 |
@ (a)

tr

e 1/R; | (i) Wk 1, + 1 A6
1+Tfp i ?

Jp

(b)

F1a. 13.3. Approximately constant current source.

Because of the difficulty and expense of obtaining a constant-current
source, this type of motor is often operated with an approximately
constant-current source. This is accomplished by supplying the arma-
ture with a constant voltage V, and inserting a very large resistance in
series with the armature. The resulting schematic representation is
shown in Fig. 13.3a. The resistance R, is the sum of the inserted series
resistance and that of the armaturé. The term L, represents the induct-
ance of the armature. The voltage E. is the counter emf induced by .
the rotation of the armature windings in the magnetic field. The counter
emf is proportional to the product of the armature speed 6 and the field
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strength . Thus ‘ v

E. = K36 S (13.8)

_ where Kj is a constant for any particular motor. The substitution of ¢
from Eq. (13.2) into Eq. (13.8) yields

Ec = KzK:;Ifo = KcIfé (139)

where K. = K:K; Solving the circuit of Fig. 13.3a for the armature

current I, yields
— Va - Ec
" Ro+ Lap

Equation (13.9) is nonlinear in that I, and ¢ multiply. To obtain a
linear representation for this system, it is necessary to linearize the
equations which describe its operation. The linearized form of Eq. (13.9)
is

1, (13.10)

0o = 2Ee| ng 4 08| i _ K.I, A8 + K.bdy (13.11)
60 < aI! B
where from Eq. (13.9) it follows that
oF oF
¢\ = K.I,, and £ = K.b;
a6 |; ! ol |;

Because Eq. (13.10) is linear, all that is necessary is to replace the
capital-letter representation of the independent variables by their lower-
case counterparts.

. Vo — €

ta = m (1312)
From the assumption that the armature supply voltage V, is constant,
ve is zero. 'The preceding expression thus becomes

—~€c

T R. ¥ Lop

The torque T developed by a motor as given by Eq. (13.3) is linearized
as follows, '

(13.13)

ta

aT| . T . , .
t= E i“ + 6—1; i’La = KmIa,-zf + K,,.I,..zu (13-14)
where from Eq. (13.3) it follows that
oT oT
'a-I; : = KmIa,' a:nd gi; ; = KmIf.-

The torque balance for the armature as given by Eq.-(13.4) is already
linear. Replacing the independent variable terms designated by capital
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letters in Eq. (13.4) by their lower-case counterparts yields the following
torque balance for small departures:

t=(Co+Jp) a0+t ©(13.15)

By substituting e, from Eq. (13.11) into Eq. (13.13), and then sub-
stituting 7, from this resulting equation into Eq. (13.14), one obtains an
equation for the torque variation ¢ as a function of 7, and Ad. Equating

R, L,
. ‘ I, (constant)
’ a EC
T,
{a) (@
T
Es + YR, | (I, LIPS 1 6
d 1+7,p Kmlf + Cv+dJp .
Kcl f -
(b)
Fig. 13.4. Armature-controlled d-¢ motor.
this value of ¢ to Eq. (13.15) and solving for Aé yields
Ad = Ku[(IsRs — K.1,6) + L.,Lapli; — (Rs + Lap)ts, (13.16)

(Ra + L.p)(C, + Jp) + K.K.I,?

For the usual case in which the equilibrium operating condition is about
the point 4; = I;, = 0 and the damping C, is negligible, the preceding
expression reduces to

. 1 , -
CAD = J—p (K‘MIW’LI - tL) (1311)

From Eq. (13.17) and the linearized form of Eq. (13.5), the over-all
block-diagram representation for this field-controlled motor which is
supplied by an approximately constant armature current may be con-
structed as shown in Fig. 13.3b.

Armature Control. A d-c motor with armature control is one in which
the speed is controlled by the armature voltage E,. An armature-
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controlled motor is shown in Fig. 13.4a, in which the field current I, is
kept constant. It is much easier to maintain a constant field current I,
than a constant armature current I, because there is no counter emf
: generated in the fixed field windings. The armature voltage E, is
usually supplied by a generator, which in turn may be supplied by an
amplifier.

The circuit equation for the armature portion of Fig. 13.4a is

E, — K.I:6 = Rilo + Lopls = Ro(1 + 7ap)la (13.18)

where 7, = Ls/R, and the term K. I8 is the counter emf developed in
the armature. The torque developed by the motor is given by the

equation ,
T = Knl;l, (13.19)

and the torque balance for the output shaft is
T=(Cxp+JpHo+T1 (13.20)

The block-diagram representation for this armature-controlled motor is
obtained by combining the block-diagram representations for Egs.

Fig. 13.5. Complete generator and armature-controlled motor combination.

(13.18), (13.19), and (13.20) as shown in Fig. 13.4b. The counter emf is
responsible for the minor feedback.

A complete generator and armature-controlled motor combination is
shown in Fig. 13.5. This is in effect a Ward-Leonard system, or motor-
generator set. The voltage E supplied to the generator may be quite
small, as in the case of that coming from an amplifier. The resistance
of the field of the generator is R;,, and the inductance is Ls,. The
armature of the generator is driven at a constant speed by a prime mover.
The output voltage of the generator, E,, goes directly to the armature of
the motor so that E, = E,.

The circuit equation for the generator field is

L B = R + Lip)so . (13.21)
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The voltage induced in the armature is the generated voltage E, = E,,

which is ’
Ea = K,,O,I,,, = K!I,, (13.22)

where 4, is the angular velocity of the prime mover, which is constant, so
that KC,G = K.. The substitution of I,, from Eq. (13.21) into Eq.
713.22) yields

K:E _ (Ki/Ry,)E
Ry + L/ap 1+ 74p

E, = (13.23)

where 75, = Ly,/Ry, is the time constant of the generator field.
The over-all block diagram relating the input voltage E and the
velocity 6 of this armature-controlled motor-generator system is obtained

AAA- fe, '
L
f N
E 1
b Ny é i : ,.R,/\

F1a. 13.6. Rototrol generator.

by connecting the block-diagram representation for the output E, from
Eq. (13.23) to that for E, in Fig. 13.4b.

D-C Tachometer. A d-c tachometer is a generator in which the
magnetic flux is supplied by a permanent magnet. Because the flux is
maintained constant, the equation of operation for a tachometer is
obtained from Eq. (13.8) as follows,

E.=E, = K;¢0 = K, (13.24)

where K, = K¢ is a constant and E, is the generated voltage.
.- Thus a.tachometer is seen to supply a voltage E, which is proportional
to the speed at which it is driven.

Rototrol Generator. When very large power amphﬁcatlon is requlred
it is customary to place two generators in series. The Rototrol gener-
ator is a combination of two generators in which part of the field for the
first, or pllot generator is in series with the armature. In Fig. 13.6 this
series portion of the field is designated by L,, and the portion with
separate excitation is L;, The series field L; causes a self-energizing
effect in that as the armature current I, increases so also does the flux .
caused by the series winding L,. An analysis of the system shown in
Fig. 13.6 yields the following equation relating the output voltage E, to
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the input E;,
K.K,/R;
T A+ ® - KN/N; + Lp)

" where K, is the constant relating the voltage output E, of the main
generator to the armature current I, (that is, E; = K,I,) and K, is the
corresponding constant for the pilot generator. The term L = L, + L,
is the total inductance of the armature circuit, and R is the total resist-
ance. The number of turns on the series field winding is N,, and that on
the separately excited winding is N;. The time constant of the separately
excited pilot-generator field is 7, = L;/Ry.
The critical value of R is

E, © (13.25)

R=R, = K&N 1 © (13.26)
I

When the total resistance R is adjusted to the critical value, Eq. (13.25)

becomes

E,. K,K, 1

D2 _ 13.2
E: R/ p(1 + 7,p) (13.27)

The primary advantage of the Rototrol is the integrating effect that is
obtained when it is critically tuned; otherwise there would be little if any
advantage in using a Rototrol in preference to two SImpIe generators in
series.

Amplidyne. An amplidyne is essentially a two-stage generator, but
the two stages are combined in a single machine. The main advantage
of an amplidyne is that it is smaller and more compact than a Rototrol of
the same rating. Because of coupling effects and various interactions
which take place in the one machine, the performance of the amplidyne is
poorer than that obtained with two separate machines. Also, the use of
two generators permits greater flexibility in the adjustment of operating
characteristics.

Remote-conirol Posttional Servomechanism. A remote-control positional
servomechanism is shown in Fig. 13.7a. The wiper arm of the input
potentiometer is positioned by the desired input position 6,, so that the
voltage E, is proportional to 6, (that is, E, = K.,6,). Similarly, the con-
trolled shaft position 6. determines the position of the wiper arm for the
other potentiometer so that E, = K.f.. The error signal E, = E, — E.
is amplified by the amplifier, and the resultant voltage is applied to the
field of a field-controlled motor so that E; = K,E.. The operational
representation of the differential equation for the motor is given by
Eq. (13.6). The over-all block diagram for this system is shown in
Fig. 13.7b.

The motor must be located at.the output shaft, while the input potentl-
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ometer is usually situated in any convenient location. A major advantage
in using such electrical equipment for position control systems is the ease
of connecting the input and output by means of wires.

The preceding position controller may be converted to a speed control
system by connecting the output shaft to a tachometer rather than to a
potentiometer. In this case, the voltage signal E, coming from the
tachometer is proportional to the speed 4, (that is, E, = K'4,). Similarly,
each wiper position of the input potentiometer corresponds to a desired

I,=constant

(a)
_| KmIa/Ry 1 6,
1+7p p(Cy+dp)
K¢ |-
(b)

Fia. 13.7. Remote-control positional servomechanism.

speed setting 6, rather than position 6,, so that the reference voltage is
E. = Kl4..

13.3. A-C Two-phase Motor. An a-c two-phase motor is used for
simple low-power applications. One of the phases is supplied with a
fixed a-c voltage which acts as the reference voltage. The other phase
is connected to the controlled voltage. A schematic representation of a
two-phase motor is shown in Fig. 13.84. Because the reference voltage
Er is constant, the speed depends upon the control voltage E. The
direction of rotation is reversed by changing the polarity of the control
voltage.

As is shown in Fig. 13.8a, the reference and control windings are
displaced by 90° in the stator of the motor. Thus, although the voltage
applied to each winding has the same frequency, there is a 90° phase
shift of one with respect to the other.

Typical performance curves relating the developed motor torque 7 and
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Fia. 13.8. (a) Two-phase a-c motor; (b) typical performance curves for a two-phase
a-c motor; (c) block diagram representation for a two-phase a-c motor.

the angular velocity ¢ for the constant values of control current I are
shown in Fig. 13.8b. The equation describing the operation of a two-
phase motor about some equilibrium point of operation is derived as
follows: From Fig. 13.8b it is to be noticed that the speed is a function of

T and I.
6 = F(T,I)
a6 a0 .
A0 = ﬁ' it+5j '.1

The torque balance for the armature is
T=(C,+Jpb+T.
The form of the preceding equation for small departures is
t=(C,+ Jp) Ad + 1,
The circuit equation for the control winding is
E = (R + Lp)I = R(1 + 7p)I
For small departures this expression becomes

e = R(1 4+ rp):

(13.28)
(13.29)

(13.30)

(13.31)

(13.32)

- (13.33)

The block-diagram representation for this two phase a-c motor is obtained

from Eqs. (13.29), (13.31), and (13.33) as shown in Fig. 13.8c,
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13.4. Synchro Error-detecting Device. Synchro systems are usually
employed as error-sensing devices. A synchro system as shown in Fig.
13.9a consists of a synchro generator and synchro motor. The rotor of
both the generator and motor are connected to the same a-c supply.
When the rotors are in the same relative position such that 6 is equal to
05, identical flux patterns are set up in each stator. Because the stator
winding for each unit is connected as shown in Fig. 13.9b, the voltage

Rotor fields
in phase

(a) A-c supply

S/ s;

(b)

F1a. 13.9. (a) Synchro generator and motor combination; (b) wiring of synchro units
in correspondence.

induced in each corresponding phase will be the same for the generator
and the motor. In this case, the voltage induced in the first stator
winding Sy’ of the generator is the same as that induced in the first winding
S: of the motor, etc. Because all corresponding coils have the same
induced voltage, no current flows through the stator coils for this balanced
position,

When the rotors are rotated with respect to one another so that 6, is
not equal to 6,, different voltages are induced across corresponding phases
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of the stator windings. This causes currents to flow through the stator
windings. The reaction of the rotor flux and the current produces a
torque on each rotor which tends to align them. In many applications,
- the rotor of the generator is held in a fixed, or reference, position; thus the
relative position of the rotor in the motor will depend upon the torque
applied to the motor shaft. The relation between torque and relative
angular position is reasonably linear up to about 75° and is given by the

equation '
T = k(8 — 6y) (13.34)

A device that produces a voltage which is a function of the relative
rotor positions may be obtained by a slight modification of the synchro

Generator

Fia. 13.10. Synchro control transformer.

generator-motor system. Such a system is called a synchro control
transformer and is shown in Fig. 13.10. The generator is the same as
before, but the motor has been replaced by a synchro control transformer.
Only the rotor of the generator is connected to the a-c supply. The stator
of the generator and that of the control transformer are identical, as
shown in Fig. 13.10. Thus, the field produced in the stator of the control
transformer is the same as that of the generator. The voltage E, induced
in the rotor of the control transformer is a maximum, E,, when the two
rotors are aligned. The voltage decreases sinusoidally as the rotors are
displaced. When the rotors are 90° apart, the control transformer rotor is
at right angles to the field and the output voltage E,is zero. To take into
account the fact that the output is zero when the rotors are displaced by
90°, it is convenient to measure 8 from a reference position which is at
right angles to the reference position for 6,, as shown in Fig. 13.10.
The operation of the synchro control transformer is then described by the

equation
E.; = Em sin (02 - 01) (13.35)
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- In - Fig. 13.11"is  shown 'a typical remote-control” positional servo-
mechanism in which the error-sensing device is a synchro control trans-
former. The output voltage coming from the cont.rol transformer is a

measure of the error
E, = E',,, sin (6, — 6.) (13.36)

For normal operation in which the error 6, — 6, is small, the preceding

expression becomes
Ec = 4 m(or - ac) (1337)

13.5. Vacuum-tube Amplifier. Vacuum tubes are frequently used to
amplify voltage signals in electrical control systems. A triode, as shown

R, L,
Reg If- constant
<O Omet
e —_—
E, Am})(llfler Eg Ifx %Lt‘g é
(3
-0 ©

e,

110 volts — -
 v— —7 Control
= A\ transformer

Generator

60~

Fia. 13.11. Remote-control positional servomechanism.

in Fig. 13.12a; is the simplest type of vacuum-tube amplifier. The three
basic elements of a triode are the cathode, grid, and plate. The cathode
serves as the source of electrons. A heater element is incorporated in
the cathode for the purpose of increasing the number of free electrons on
the surface of the cathode. Because electrons are negatively charged
particles and the plate is charged positively with respect to the cathode,
the number of electrons flowing from the cathode to the plate will depend
upon the value of the voltage drop from the plate to the cathode, E .
(In accordance with standard practice, the direction of current flow is
opposite to that of the flow of electrons.) When the grid is charged
negatively with respect to the cathode (that is, E, is negative), electrons
on the cathode are repelled, which decreases the current flow. Because
the grid is located close to the cathode, a small negative charge E, will |
cause a rather substantial decrease in current flow. For example, in
Fig. 13.12b with the plate voltage E, held constant at 80 volts, changing
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the grid voltage E, from 0 to —2 volts results in a change in the plate
current I, from 7.8 to 3.4 ma.

For a vacuum-tube amplifier, the plate current I, is a function of the

. voltage drop E, from the plate to the cathode and also the grid-bias
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Fig. 13.12. (a) Triode; (b) typical tube characteristics for a triode; (c) equivalent
circuit for a triode.

voltage E,, that is, v
I, = F(Ep,Eq) (13.38)
Linearization of the preceding expression yields

al, |

_ oL,
ip = (')E'pk L €pk + 5Egk ieak (13.39)

Solving for ey gives
OE

. OE ok
o = 31,

;. _ 9Eu| oI,
R &

s 0E 1

g (13.40)

The product of the partial derivatives in the last term may‘be,siinpli,ﬁéd
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by first writing Eq. (13.38) in the implicit form
Q@I pEpi,Br) = 0 (13.41)

From calculus, it is known that the product of all the partial derivatives
for an implicit function is equal to —1, that is,

aI,, aEpk aEak

3E,; 9E,, oI, — ! (13.42)
aEPk - aEpk aIp
where 0B, oI, oE,; (13.43)
Substitution of the preceding result into Eq. (13.40) gives
0E| . |, 9E
ot = aI:k T + aT:: e
or epr = Tply — HEm (13.44)

where dE,./d1, = r, is the change in voltage across the plate per change
in current, which is the effective resistance of the plate. Thus, r, is
called the dynamic plate resistance. The term 0E,./dE,; = —u is the
change in voltage drop across the plate per change in grid to cathode
voltage, with I, remaining constant. Because E,. increases as Eg
decreases, the negative sign is used so that p will always be a positive
number. The term p is called the amplification factor. The equation
for the operation of the circuit shown in Fig. 13.12¢ is the same as Eq.
(13.44). Thus, Fig. 13.12¢ is the equivalent circuit for a vacuum-tube
amplifier.

In Fig. 13.13¢ is shown a vacuum tube in which the load is a pure
resistance. The d-¢ voltage E.. determines the equilibrium value of
the grid bias E,.. The total grid bias is given by the equation

Eak = K, — E. (1345)

where E, is the input-voltage signal which is to be amplified. The plate
bias is provided by the d-c voltage Ey. The loop equation for load and
plate circuit is
Ew = IR, + En

or I = — RLL B + %” (13.46)
Equation (13.46) is the equation of the straight line which is super-
imposed on the curve for the tube characteristics as shown in Fig. 13.13b.
From Eq. (13.46), it follows that with I, as the ordinate and E, as the
abscissa, the slope of this line is —1/R;, the I, intercept is Ey/Ry (that is, |
when E,. = 0, then I, = Ey/R;), and the E, intercept is Ey. This
straight line i& called the load line. The reference point of operation of
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Frc. 13.13. (a) Vacuum tube with resistive load; (b) load line superimposed upon
operating curves; (c) equivalent amplifier circuit with a resistive load; (d) equivalent

amplifier circuit with a general impedance load.
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Fie. 13.14. (a) Tetrode; (b) typical tube characteristics for a tetrode.

the tube is determined by the intersection of this load line and the tube-
characteristic line for E, = 0, which is E;x = —E.. - From Fig. 13.13b,
it is to be seen that, for a small sinusoidal input e, the variation in the
plate current 7, and the variation e, are also sinusoidal. The lineariza-
tion of Eqs. (13.45) and (13.46) yields

Cok = €

iy = — o2 (13.47)

Ry

The substitution of the preceding results for e, and e, into Eq. (13.44)
yields

—Rit, = rotp — pe,
or pe, = (r, + Rr)i, (13.48)

Equation. (13.48) is the basis for the equivalent amplifier circuit shown
in Fig. 13.13c. When the load is some general impedance Z rather than
a pure resistance, the equivalent circuit is that shown in Fig. 13.13d.
The over-all voltage amplification for a tube is the ratio of output voltage
er to the input signal ¢,, Thus, the over-all voltage amplification, or
gain, is

Gain = % = =Hit (13.49)

€ €s .

The substitution of 7, from Eq. (13.48) into the preceding expression
yields

Gain = —R, — % - THB g (13.50)
(rp

-+ RL)/@. Ty + Ry B
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The minus sign in the preceding expression indicates that the voltage e
decreases as e, increases (i.e., there is a 180° phase shift). :
Tetrode and Pentode. A tetrode, which is a four-element tube, and a
* pentode, which has five elements, both have much higher gains than a
triode, which has only three elements. A tetrode has a screen grid in
addition to the usual cathode, grid, and plate of a triode. A tetrode
is shown in Fig. 13.14a, and typical tube characteristics are shown in

(a) II— I T
10
]
E =0 volts
8
o -1
£
§° 2
3
2 44
2 -3
21 4
- -5
0
0 100 200 300 400 500
(b) Plate voltage

Fia. 13.15. (@) Pentode ; (b) typical tube characteristics for a pentode.

Fig. 13.14b. When the plate-to-cathode voltage E,. is less than the
screen-grid voltage, the tube characteristics become quite erratic. Thus,
tetrodes are usually operated in the range where the voltage E,. is
greater than the screen-grid voltage.

A pentode has a fifth element, the suppressor grid, in addition to the
four elements of the tetrode. A pentode tube is shown in Fig, 13.15a, and
a family of curves of typical tube characteristics is shown in Fig. 13.15b.
Because of the suppressor grid the pentode does not have the irregular
tube characteristics that were found in the tetrode when the voltage
Epx was less than the screen-grid voltage. The suppressor grid is.
located between the plate and the screen grid. Because the suppressor
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grid is at cathode potential, it is negative with respect to the plate. Thus,
it repels the flow of electrons from the plate to the screen grid even when
the plate voltage is less than that of the screen grid.

The plate resistance r, for a pentode is much greater than that for a
triode, so that for a pentode 7, is generally much greater than R;. Thus,
for a pentode r, 4+ R; may be approximated by r,, in which case from
Eq. (13.50) it is seen that the amplifier gain K for a pentode is

K=%LR, (13.51)
r?

where u/r, = (0Eu/0En)/(0Epm/81p) = ~0Imu/dEx = gm is the change
in plate current I, per change in grid-to-cathode voltage E,:, with E,;

Input ” ” Output

(b)
Fia. 13.16. (a) Capacitance-coupled amplifiers; (b) transformer-coupled amplifier.

held constant. This coefficient is called the mutual conductance, or the
transconductance, of the tube. The pentode is capable of much greater
amplification than is a triode.

Coupling. To obtain a greater amplification, it is customary to place
amplifiers in series so that the voltage output from the first tube is the
input to the second, etc. The over-all gain is the product of the gain
of each amplifier. For a-c amplifiers, a capacitor C as shown in Fig.
13.16a is frequently used as the coupling. Only the a-c component e,
at the output of the first amplifier is transmitted through the capacitor
to the second amplifier. For example, the voltage at point A is Ey, and
that at point B is Ey — €. Because it is desired to have only e, appear.
as the input signal to the second tube rather than e; plus the d-¢ bias
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Ey, it is necessary to block the d-c component by means of the capacitor.
For ‘practical purposes the value of ¢, may be assumed equal to ey if
the resistor R, is at least ten times greater than R and the reactance of
the capacitor is one-tenth or less than the value of R,.

Another method for isolating the a-¢ component ez, of the output tube
is to use a transformer. Two amplifiers which are coupled through a
transformer are shown in Fig. 13.16b. An advantage of transformer
coupling is that the over-all gain per stage is increased by the turns ratio.
However, flux leakage soon becomes excessive for a large turnsratio. The
major disadvantage to transformer coupling is that at higher frequencies
leakage reactance and capacitance between turns limit the operation.
Resistance-capacitance-coupled amplifiers have a greater frequency range
than transformer-coupled amplifiers.

When the input signal is a direct current or a very low frequency, the
voltage ez cannot be isolated by the preceding techniques. To amplify

Low-frequency | Modulat ' High-gai )
- ency ulator igh-gain :
input or chopper a-c amplifier Demodulator Output

F1a. 13.17. Chopper-stabilized d-c amplifier.

d-c or very-low-frequency signals, it is customary to use chopper stabiliza-
tion to achieve high performance. In Fig. 13.17 is shown a chopper-
stabilized d-c amplifier. The modulator, or chopper, converts the input
signal to a relatively high-frequency a-c signal, which may be amplified
by a standard a-c amplifier. The demodulator than restores this ampli-
fied signal to its original d-c, or low-frequency, form.

Push-Pull Amplifier. A push-pull amplifier is in effect two tubes in
parallel. When considerable a-¢c power is required, as is often the case
with electrical control systems, a push-pull type of amplifier is capable of
doubling the power output. A more important factor is that the non-
linearities of one tube tend to be compensated for by the second, with
the result that distortion is minimized. This enables the push-pull
amplifier to be operated over a wider range than would be possible with
a single tube, thus permitting an even greater power gain. Often a
push-pull amplifier is used as the last stage of a high-gain amplifier system
in order to reduce distortion. In Fig. 13.18¢ is shown a push-pull
amplifier. If there is no input voltage e, then the grid-to-cathode bias
for each tube is —E.. Thus, each tube has the same initial equilib-
‘rium point of operation. - An input voltage causes a signal voltage e,
of the polarity indicated to appear on the grid of tube 1 so that the
resultant grid-to-cathode voltage is Ex, = ¢,, — E.. This causes a cur-
rent ¢,, to flow in the direction indicated. The signal voltage e,, = —e,,
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applied to tube 2 is of the opposite polarity. Thus the current 7,, flows
through the second tube in the opposite direction to that in the first.
However, the directions of the currents flowing through the output trans-
former are additive. In Fig. 13.18b is shown the equivalent circuit for a
push-pull amplifier, in which 4, = ¢, = 1, Because the current Tpe
flowing through the power supply Ej; is opposite to ,,, there is no net a-c

€;,-input R,

‘NV ‘v‘v"
P »

0 0o

>
3R

7 L

AN A

(b) (c)

Fi1e. 13.18. (a) Push-pull amplifier; (b) equivalent circuit for a push-pull amplifier;
(¢) simplified equivalent circuit for push-pull amplifier.

current flowing through Ew. Thus, the Ej, line is omitted in the equiv-
alent-circuit representation.

For an ideal transformer, the sum of the magnetomotive forces (mmfs)
around the core is zero. Thus for the output transformer it follows that

ile—iLN2=0
. _Ni. _ 4
or =t = (13.52)

where « is the ratio of the total secondary turns N, to the total primary
turns N; (that is, « = N3/N,). The power delivered to the load resistor .
is

P = i?Ry = i,?R., (13.53)
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Thus, the equivalent resistance R.,

; LAY RL e e
R, = (;) Ry = = (13.54)
Similarly, if it is assumed that the input transformer is also ideal,
ain = ﬁﬂl o
€y = 5 €n and e, 5 G (13.55)

Thus, the voltage signal in Fig. 13.18) may be written as
| i"(en + es:) = HOin€in (13.56)

The resulting equivalent a-c circuit is shown in Fig. 13.18¢c.

13.6. Transistor Amplifier. In many respects transistors are superior
to vacuum-tube amplifiers, as is evidenced by their increasing use in
electronic controls. An obvious advantage is their small size. In addi-
tion, they require much less power than vacuum tubes. For example,
low-level transistor amplifier stages operate with collector voltages of
only a few volts, whereas vacuum-tube plate voltages are usually several
hundred volts. Another source of power savings is that transistors have
no heater element such as is required for the cathode of vacuum tubes.
A strong feature is that the life of a well-designed transistor is about
50,000 hr, as compared with 2,000 hr for a vacuum tube.

A disadvantage of transistors is that their characteristics are sensitive
to temperature variations. Also, there is a rather large variation in
characteristics of successive transistor units as they come from the
production line. However, these disadvantages are continually bemg
minimized as manufacturing techniques are improved.

The three major parts of a junction transistor are the emitter, collector,
and base. A junction transistor is, in effect, a sandwich of three sections
of semiconductor crystal. The section in the center is the base, Whlle
the outer sections are the emitter and collector, respectively.'—3 ’

As is shown in Fig. 13.19a, a transistor is represented by a circle with a
dash init. The base isindicated by the line which is perpendicular to the
dash. The emitteristheline with the arrowhead pointing toward the dash.,
The collector is represented by the line which is symmetrical to the emitter,
but the collector does not have an arrowhead.

In Fig. 13.19a is shown a transistor circuit in which the base is
grounded. The current I, is the current which flows from the emitter

1 Gibson and Tuteur, op. cit.

3 L. P. Hunter, “Handbook of Semiconductor Electromcs,” McGraw-Hill Book
Company, Inc., New York, 1956.

3 R. F. Shea, “Transmtor Circuit Engineering,” John Wiley & Sons, Inc., New York,
1957.
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through the base, and the current I. flows from the collector through the
base. The emitter voltage with respect to ground is V1, and the collector
voltage is V.. As is indicated in Fig. 13.19a, the emitter current I, is a
function of the emitter-to-ground voltage V, and the current I. flowing
through the collector, thus,

I, = F(Vyl,) (13.57)
For small variations, the preceding expression becomes
. al, p
le = W} R Uy + OI,,. ; (1358)

The equivalent-circuit representation for the preceding expression in
which », is the applied voltage is obtained by first solving for v,.

DAPI2
oI, al, |; dl,

By writing Eq. (13.57) in the implicit form G(I.,V.,I.) = 0 and utilizing

(13.59)

v =
0

(a) (b)

F1e. 13.19. (a) Grounded-base connection; (b) equivalent circuit for grounded-base
connection.

the fact that the product of the partial derivatives for an implicit function
is equal to —1, it follows that

oL aVyol. _ _,

6V1 aI ol,

oV, _ _ V.l
or O oI, oL (13.60)
‘Substltutlon of the preceding result into Eq. (13.59) gives

n=30 i 30 i = i + i (13.61)
aVl _ aVl

where e oL | and ™= 3 | (13.62)

The equivalent-circuit representation for Eq. (13.61) is shown on the
left side of Fig. 13.19b. The resistances r, and r. do not exist physically
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in the transistor but are defined by Eq. (13.62). The dynamiec resistance
s + 7. i8, in effect, the ratio of the change in voltage from the emitter to
the base per change in current. The collector current does not flow
through the emitter, so that the change in voltage per change in collector
current is designated as re.

From Fig. 13.19¢, it follows that the current I. is a function of the
voltage drop V,, from the collector to the base, and the emitter current
I,, that is,

1. = F(Vyl,) (13.63)
Linearizing and solving for v; gives
i) 7] oI,
v =30 i = 82| 2l i = (o ric 4 (o rded (13.69)
12 _ _ oI,
where 1y + 1o = o | and @= =37 (13.65)

The reason for the minus sign in the preceding equation for « is that,
with the collector voltage V. held constant, I, decreases as I, increases.

—_—
(O
——e

(b) =

Fic. 13.20. (¢) Grounded-emitter connection; (b) equivalent circuit for grounded-
emitter connection.

The equivalent circuit for the collector as described by Eq. (13.64) is
shown in the right portion of Fig. 13.19b. The two interlocking circles
represent a constant-current source of az.. The term ais a very important
transistor parameter. For junction transistors, the value of « is usually
slightly less than unity. Typical values of o range from 0.95 to 0.98.
For a grounded-base transistor, it follows from Eq. (13.65) that the
current amplification ratio I./I. can never exceed unity because o is
always less than 1.

To achieve a high amplification ratio, the grounded-emitter transistor
connection shown in Fig. 13.20a is commonly used. The input current
is I;, and the output current I, is also the collector current I.. The
potential of the collector, or output voltage, is V» volts. As is indicated
in Fig. 13.20a, the collector current I, is a function of the voltage drop
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Vs — V, from the collector to the base, and also of the current I « which
flows through the emitter.

I.=FV,-V,1,) (13.66)
Linearization yields ’

. a1, ' ol
T = a“(vz B ! L (v: — n) + a—L

4, (13.67)

Solving for the voltage drop v; — v, gives

_oVy=V)| . V.- V)| al
Vo — 0 = T i’lc - T ,-G_I. (13.68)
v — v1 = (rs + 1) (% + at,) (13.69)
' _o(Va—Vy _ _ 9l
where rh+ 1. = oL | and a= 3L . (13.70)

As is indicated in Fig. 13.20a, the emitter current I, is a function of the
voltage drop from the emitter to the base, — V1, and also of the collector

current I,. Thus
I, = F(V.,I,) (13.71)

In the preceding general functional relationship for I, it is not necessary
to introduce the minus sign in front of V,. The correct sign in the final
linearized expression is automatically accounted for in the evaluation of
the partial derivatives. The resultant linearized expression for v, is

v = ?3—1;: iz'c + %IIL: ‘_z', = —rnge — (ry + 7). (13.72)
where —1p = 3—‘;: ) and —(re + 1) = Z—III: . (13.73)

The reason for the minus signs in Eq. (13.73) is that v, decreases as
either 7 or 4, increases. Equations (13.69) and (13.72) form the basis
for the equivalent grounded-emitter circuit shown in Fig. 13.200.

The much simplified equivalent circuit of Fig. 13.21a is obtained in
the following manner: From Fig. 13.20g, it is to be noted that

Il = _(Ie + Ic) (1374)

or = —(1, + 1) (13.75)
It should also be noted that I, = I 2, and thus

te = 1y (13.76)

h Parameters for the Grounded-emitter Connection. By rearranging Egs.
(13.69) and (13.72) so that v, and 7, are the dependent variables and 7; and
v, are the independent variables, that is,

v1 = hifs + he2 (13.77)
iz = hf,il + h“vz (13.78)
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The simplified equivalent circuit of Fig. 13.21a follows directly from
Eqgs. (13.77) and (13.78). - The values of the constant-h- parameters are
obtained as folows: Substituting ¢ % from Eq (13 75) inte Eq (13 72) and
* noting that 1, = 1, yields

v1 = —rite + (1 + 7e) (%1 + 7:2) = ("b + rei + r°i2 (13’79)

Similarly, substituting »; from Eq. (13.79) into Eq. (13.69) and noting
that ’I:, = - (1,1 + 22) yields

Vg = [rb +r.— a(rb -+ Tc)]il + [Tb +r.+r. — a(rb + Tc)]‘iz (13.80)

The elimination of 7; from Eqs. (13.79) and (13.80) yields Eq. (13.77),
in which it is seen that

o _rdretm—amtr)l _ T
hii =1+ 1 oA+ re — a(rb T Tc) = 1 —a + (13.81)
and by, = Te =T (13.82)

o+ re+ 7. —alrs+ 1) 1(l — )

In making these approximations, use is made of the fact that r. is much
larger than 7, or 7. The h-parameter subscripts 7, 7, f, and o refer to

i i is

o]
[}

é
i
}

(a) oL b)

Fia. 13.21. (a) Grounded emitter in terms of h parameters, (b) approximate cn'cmt
for grounded emitter in terms of & parameters.

input, reverse, forward, and output, respectively, while the second sub-
seript, e, indicates that these parameters are defined for the grounded-
emitter transistor. A second subseript e could also be added to the volt-
age and current terms of Egs. (13.77) and (13.78). ,

Because Eq. (13.80) is in the same general form as Eq. (13 78), all
that is necessary is to solve Eq. (13.80) for 7: and compare coefficients of
like terms to obtain directly

__ mtr—antr) __ a.i '
b= At —am ) —a " (13°§3)
hoe = 1 1 (13.84)

AT T — als + 70 1o(l — a)
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... Afurther simplification in the equivalent circuit shown in Fig, 13.21a
is obtained by utilizing the fact that h.. is generally much greater than
hrevs.  Also, the load resistance Ry is usually much less than h,, so that
hee is effectively shunted and may thus be neglected. The resulting
equivalent circuit for a grounded-emitter transistor amplifier is shown
in Fig. 13.21. The input circuit and output circuit are seen to be
decoupled. For the output circuit, it is seen that

12 = hydy
or : 2 by (13.85)
(21

Thus, the current gain is simply hy..

~02[ — 200
2 V, = —30volts E—IO — 150
-4 /__——_—'
g. -0.1 o 100
= d il 50
A 0
0 " L " N 1 0 1 ! 1
0 ~100 —~200 0 -10 -20 -30
(a) I, pa (b) Ve, volts

Fi1a. 13.22. Characteristic curves for grounded-emitter connection.

The x.rol>tage gain is obtained by substituting ¢, = —v,/R. into Eq.
(13.78) and solving Eqgs. (13.77) and (13.78) simultaneously. Thus

v —hyo(Ri/hie)
;;, - 1 + RLhoe(l - hjehre./hoeht'c) (13.86)

For most amplifiers Rih,, < 1, and 0 < (hghye/hochic) < 1, 80 that the
voltage amplification is approximately

vy Ry ,

"= hye T - (13.87)
The resulting power amplification is the product of the current and volt-
age amplifications.

An important advantage of the h-parameter designation is that the
values of & may be obtained directly from characteristic curves which
are usually supplied by the manufacturer. From Fig. 13.23q, it is to
be seen that for a grounded-emitter connection the base is the input and .
the collector the output, so that the subscripts 1 and b may be used inter-
changeably, as well as the subscripts 2and¢. A typical set of curves for
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a grounded-emitter connection is shown in Fig, 13.22. The geometric
interpretation of the i parameters from Fig. 13.22a and b gives, respectively

Vl = F(Il,Vz)

= F(ILV) (13.88)
Linearization of the preceding equations y1e1ds
v = a—VJ i+ gg’ (13.89)
. OI 2 al,
1 = ol, l i1+ = OV (13.90)

Equating coefficients of like terms of Eqs. (13.89) and (13.77) and
also coeflicients of Egs. (13.90) and (13.78) yields

h~=ﬂ,—'l=a—v" h =6V1 ___G_TQ_»

ey oL Vel V.l (13.91)
b 9Ll oL . _ oL _ ol '
fo = 8L~ ol “ 9Vl a8V,

The problem of coupling transistor amplifiers is tisually much simpler
than that for vacuum-tube amplifiers. For example, it is possible to

‘16_
Tl

(b) (c)

g

F1e. 13.23. (a) Grounded-emitter amplifier with a resistive load; (b) voltage divider;
(c) biased emitter.

operate the base of a second stage directly from the collector voltage V.
of the preceding stage, etc. If the quiescent collector voltage Vo of
the first stage is different from the desired value V,, for the second stage,
Ve may be run through a biased voltage divider as shown in Fig. 13.23b
to achieve the proper Vi. Another technique is to bias the emitter as
illustrated in Fig. 13.23¢c. A biased emitter in effect decreases V, and
V. for the particular transistor by the amount of the biasing voltage.
The direction of current flow and the signs for the various voltages
used in the preceding discussion is appropriate for the p-n-p type of
transistors. In a p-n-p transistor, the current is carried through the
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(a) " (b)

L2
By e ‘tz R
b ho | | £
{e) T (d)

Fia! '- 13;24.' (@) Grounded-emitter connection ; (b) grounded-collector connection ;
(c) grounded-base connection; (d) equivalent four-terminal network.

TAleE 13.1

Circuit ] G, ' G Approximation

Rpha < 1

R R L >1
Grounded emitter —hy. ;f k. hie
: Mt h/uhn -
0 — 1
< hl.‘haﬂ <

RLhn < 1 L
R,
| | RO
Grounded collector 1 —(1 +hp) | QA+ bR 7 -
! ) . T >
1 + hlc_
thne

Grounded base = . — — S
T e e LR B
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emitter and the collector by positive carriers called holes, while the cur-
rent in the base is transmitted by means of negative carriers, or electrons.
For the other transistor type, the n-p-n transistor, the current is carried
in the emitter and the collector by negative carriers, while the base has
positive carriers. To convert from a p-n-p to a n-p-n transistor, all
that is necessary is to reverse the polarity of thé battery voltages.

h Parameters for the Grounded-collector and the Grounded-base Connec-
tions. Figure 13.24a, b, and ¢ show the grounded-emitter, grounded-
collector, and grounded-base transistor circuits, respectively. Each of
these circuits may be represented by the equivalent four-terminal network
shown in Fig. 13.24d. Table 13.1 gives the equations for the voltage gain
G, = v,/v, and the current gain G: = 15/, for each of these circuits.

By comparison of Fig. 13.24a¢ and b, it follows that the voltage drop
from the base to the emitter is

and thus Se Vie = V1o — Vgc (13.92)

The second subscript refers to the type of circuit, that is, e for grounded
emitter and ¢ for grounded collector. Similarly, correspondmg values of
the voltage drop from the collector to the emitter, the current flowing
through the basge, and the current ﬂowmg through the collector are,
respectlvely, -

Vog = —Vac R
. T1e = t1c . (13.93)
~. i . 3 .

226 = —1%c — T2 -

Substitution of theSe reSults into Eqs (13.77)-and (13. 78) gives

L - VUic = ie'Llc + (1 - hre)v2c
7 'ih = — (1 + hfc)"/lc + hocvzc

Thus, the h parameters for a groundqd—c’dllector circuit are obtained in
terms of the A parameters-for a grounded-emitter circuit, that is,

(13.94)

hie = h!'c

hrc =1- hrc

hye = — (1 + hye) (13.95)
. hoc = hu

Similarly, the characteristics of a grounded-base circuit may be
expressed as a function of the h parameters for a grounded-emitter circuit.
An advantage of using h parameters is that the characteristics of the
grounded-emitter eircuit (which are usually supplied by the manufacturer)
may be used to evaluate the performance of the grounded—collector or
grounded-base connections.



CHAPTER 14

INERTIAL GUIDANCE

Gyroscopes are basically the position-measuring or -indicating devices
for inertial-guidance systems. The ability of a controlled vehicle to
maintain its desired path depends upon the accuracy with which the
gyroscopes indicate its position.

Inner gihbal

Outer gimbal

F16. 14.1. Free gyroscope.

As is shown in Fig. 14.1, a gyroscope consists of a spinning disk (i.e.,
gyrowheel) which is supported by linkages called gimbals. The axis of
rotation of. the gyrowheel is referred to as the rotor spin axis. This is
the y axis in Fig. 14.1.

14.1. Free Gyros. A basic characteristic of gyroscopes is that the
rotor spin axis always points in the same direction unless it is acted upon
by an external torque. The term “free gyro” is used to describe a gyro- '

wheel which is suspended in such a manner that external torques cannot
290
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be transmitted to it. The gimbals for the free gyro shown in Fig. 14.1
are supported by bearings so that, regardless of the motion of the frame,
the direction of the spin axis tends to remain fixed in space.

This tendency for the rotor spin axis to maintain a fixed direction in
inertial space is illustrated in Fig. 14.2. Initially, the spin axis of this
gyroscope is perpendicular to the earth, as is shown in Fig. 14.2a. If the
vehicle in which the gyroscope is mounted is not moving relative to the
earth (i.e., remains at point A, which is fixed), in 3 hr the earth turns one-
eighth its daily revolution, or 45°. Thus, in 3 hr, the angle of inclination
of the spin axis is 45° with respect to the earth, as shown in Fig. 14.2b.
The gyroscope is still located at point A, and its rotor spin axis has not

o
ch

(a) (b) (¢c)

Fia. 14.2. Relative motion of the earth with respect to the rotor spin axis.

changed direction in inertial space. The angle of inclination is due to the
earth’s rotation in space. After 6 hr, the spin axis is tangent to the earth,
as shown in Fig. 14.2¢c.

In a practical gyro, the spin axis tends to drift slowly from its initial
direction because of torque acting on the gyrowheel due to friction in
the gimbal bearings. This phenomenon is referred to as drift. It should
be noted that the angle of inclination of the spin axis with respect to the
earth depends not only on the rotation of the earth and drift but also
on the movement relative to the earth of the vehicle in which the gyro-
scope is mounted.

14.2. Vertical and Directional Gyros. A vertical gyro is one in which
the spin axis is aligned with the gravitational field of the earth (i.e.,
perpendicular to the earth’s surface). To compensate for the effects
of drift, earth’s rotation, and motion of the gyroscope relative to the
earth, it is necessary to reset the reference position of the spin axis.
This is generally accomplished by applying an external torque to realign
the gyrowheel to the desired reference position. An external torque
can be applied to the gyrowheel shown in Fig. 14.1 by extending the
gimbal axes and connecting torque motors to these shaft extensions as
shown in Figs. 14.4 and 14.5, rather than letting them rotate freely in
bearings. The rotor of the torque motor is wound aroundthe shaft
extension and is free to rotate inside its stator, which is fixed to the
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adjoining gimbal or frame. An electrical signal applied to the torque
motor causes a torque to be exerted on the shaft extension.

A gyro used to establish a vertical reference can automatically be
.controlled by, or slaved to, a more accurate primary reference such as
‘the average position of a pendulum. This is accomplished by comparing
the direction of the gyro spin axis with the direction of the pendulum
and using the resulting error signal to make the gyro position correspond
.to that of the pendulum. By having a small torque applied to the gyro
so that the spin axis cannot follow rapid fluctuations of the pendulum,

y
d) Yaw

] ' z;/OPlteh _

Roll &x

F1a. 14.3. Pitch, roll, and yaw motions of a vehicle,

the gyro spin axis tends to remain aligned to the average pendulum
-position (i.e., the vertical). .

A directional gyroscope is one in which the spin axis lies in a horizontal
plane and holds a given direction, which is usually north-south. A
.directional gyroscope may be slaved to a magnetic compass, which
:provides the primary north-south reference. :

By maintaining the spin axis in some reference direction, then it is
_possible to measure the angular displacement of the frame (which is
-the angular displacement of the vehicle to which the frame is mounted).
.Gyroscopes which are used to measure such displacements of a vehicle
from some reference direction, as a vertical or a north-south orientation,
.are frequently called displacement gyroscopes. ' _

. A vertical gyroscope can measure pitch and roll, while a directional
gyroscope can measure yaw (azimuth). From Fig. 14.3 it is to be noted °
that pitch is- angular motion about the lateral, or z, axis, roll is angular
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motion about the longitudinal, or z, axis, and yaw is angular motion
about the normal, or y, axis. The frame and the pitch and roll scales
of the vertical gyroscope shown in Fig. 14.4 are fastened to the vehicle.
A rotation of the vehicle about the z, y, or z axis causes a corresponding
rotation of the frame and the attached pitch and roll scales. For exam-
ple, a rotation of the vehicle about the z axis causes a corresponding
rotation of the pitch scale, but the outer gimbal and attached pointer
cannot rotate about the z axis, because the spin axis is maintained in a

Torqué motor
( stator fastened

to frame)

Torque motor
2 (stator fastened

. to outer gimbal)

F1a. 14.4. Vertical gyroscope.

vertical position. Thus the relative motion between the pitch scale,
which rotates with the vehicle, and the pointer on the outer gimbal is
& measure of the angle of inclination, or pitch, of the vehicle. The pointer
and scale may be replaced by an electrical pick-off in order to obtain a
voltage signal proportional to the pitch angle. This change in pitch
also causes the roll scale to rotate about the z axis, while the inner gimbal
remains fixed. However, there is no change in the scale reading, because
this motion is perpendicular to the pointer on the inner gimbal. For a
rotation about the z axis the roll scale rotates relative to the pointer on
the inner gimbal, which maintains its vertical inclination. This rela-
tive motion is a measure of the roll. The pitch reading is unaffected,
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because both the outer gimbal and the pitch scale rotate the same amount,
and thus there is no relative motion. Similarly, a motion of the vehicle
about the y axis (i.e., yaw) has no effect upon either the roll or the pitch
readings.

For the directional gyroscope shown in Fig. 14.5, the rotor spin axis
maintains a fixed horizontal direction (usually a north-south direction).

( stator fastened
to frame)

Torque motor
( stator fastened
to outer gimbal)

Fig. 14.5. Directional gyroscope.

A rotation of the vehicle about the y axis is seen to cause a corresponding
rotation of the attached yaw scale. However, the outer gimbal and
attached pointer cannot rotate, because the spin axis is maintained in its
reference direction: This relative motion is thus a measure of the direc-
tion of heading, or yaw. Other motions of the vehicle have no effect
upon the measured angle of yaw.

Vertical and directional gyros are used in automatic pilots, roll-
stabilizing equipment, artificial horizons, inertial-navigation equipment,
ete, To obtain a better understanding of the operation of other types of
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gyroscopes which play an essential role in inertial navigation, some atten-
tion is first given to the dynamics of gyroscopes.-

14.3. Dynamws of Gyroscopes. A gyrowheel is essentially a spmmng
wheel, as is shown in Fig. 14.6. Fre-
quently, the gyrowheel is the rotor of
a synchronous motor which rotates the
rotor at a constant angular velocity.
The disk, or rotor, rotates about the x
axis (i.e., its spin axis) with an angular
velocity o,. In accordance with
standard procedure, the vector repre-
senting the angular velocity o, is in the
direction in which a right-hand thread
.would move 1f the-thread were rotating Fie. 14.6. Froo-body diagram of a
in the same direction as the gyrowheel. gyrowheel.

Thus, the vector representing , is in
the positive direction of the z axis. If a positive torque T, is applied
about the z axis as shown in Fig. 14.6, from Newton’s law this torque

y axis “ H=dJ,w,
-A6,

> X

AH=J; Aw, =T, At

'

l {a)
z .

T’ (d)

%o, AH=J, Aw,=T, At
b Hede 'x
=gy
(c)

F16. 14.7. (@) Gyroscopic precession caused by T.; (b) precession velocity; (c) gyro-
scopic precession caused by T'y.

2 axis

is equal to the time rate of angular momentum. That is,

AH o AUJw) _ g Jibes
T, = lim =5 = lim === = Im =7 (14.1)
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where J, is the polar moment of inertia of the gyrowheel about its- spin
axis and H = J,0, is the angular momentum of the disk. Because J;
and A¢ are scalar quantities, Aw, is in the same direction as T, and AH, as
shown in Fig. 14.7a. In this figure, the y axis is perpendicular to the
plane of the paper and coming out from the paper. From the geometry
of Fig. 14.7a, it follows that

T, At

tan (—A4,) = T oo, (14.2)

Because tan (—A#f,) = —A4,, »
. T, .
“= AT T Tm (449)

The angular velocity imparted to a gyrowheel because of an external
torque is referred to as the velocity of precession. The vector represent-
ing-the velocity of precession is perpendicular to the plane determined
by the spin vector and the torque vector. In particular, the direction of
rotation of the precession velocity is the same as that required to rotate
the spin vector o, into the torque vector T,, as is shown in Fig. 14.7b.

~ For a positive torque 7', applied about the y axis, the resultant vector
diagram is as shown in Fig. 14.7c. From the geometry of this figure, it
follows that

_ T, At
tan (A6,) = T oo (14.4)
. _ds, T,
and therefore @ == T (14.5)

where w, is the velocity of precession about the z axis. Again, it is to
be noted that the gyro tends to precess so as to line up the spin axis with
the direction of the torque vector.

In a-practical gyroscope, torque is not applied directly to the gyrowheel
but rather is applied to the gimbals, usually by means of either the y-axis
torque motor or the z-axis torque motor. Thus, Eqgs. (14.3) and (14.5)
must be modified to include the effects of the gyro rest inertia and viscous
friction of the gimbal bearings. That is, in addition to causing the
precession, a torque T}, applied by the y-axis torque motor is utilized in
accelerating the rest inertia J,(d%0,/dt?) of the gyro about the y axis
and in overcoming the viscous friction of the y-axis gimbal bearings,

Cy(dé,/dt). Thus
d 0, de,
Ty=Jvgg e d

Similarly, it follows that the torque 7. applied by the z-axis torque
motor is

+ C,, J, (14.6)

dsé,
o

d0,
T: = s dtz + Cs -J

(14.7)
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where J, and J, are the rest inertias of the gyro and gimbals about the y
and z axes, respectively. Similarly, C, and C, are the coefficients ‘of
viscous damping for rotation about the y axis and the z axis, respectively.

14.4. Restrained Gyro. A restrained gyro is one which has constraints
such as springs or dampers attached to the gimbals in such a manner that
a motion of the gimbal tends to precess the gyro.

Iy

i

Rigidly attached

FIG 14.8. Rate gyro.

F or the gyro shown in Fig. 14.8, it is to be noticed that with the frame
hc_ld fixed the gyrowheel is free to rotate about the z axis but not about
the y axis. :Such a gyroscope, which can pivot about only one axis, has
one: degree- of freedom. Gyroscopes such as those shown in Figs. 14.1,
14.4, ‘and 14.5 are free to pivot about the two mutually perpendlcular y
and 2 axes and have two degrees of freedom. . .

. Rate. Gyro. A rate gyro is one, in ,which the motion of a gxmbal is
restramed by means of. sprmgs as shown in Fig. 14.8. When the frame
rotates about the y axis, the y-axis torque is transmitted through the
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gimbal arrangement to the gyrowheel. This causes a precession about
the z axis, which is seen to be resisted by the restraining springs. - Because
the torque 7. exerted by the restraining springs opposes the precession
0., it follows that

T. = —K.6, (14.8)

The substitution of the preceding value of T, into Eq. (14.7) yields
the following equation of operation for a rate gyro,

Kgaz + Czpoz + lezol = th‘pall

or 6, = 7 +J&‘:’;, g 6, (14.9)
By designing the rate gyro so that the first two terms in the denomi-
nator may be considered negligible, the angular position 6, is a measure of
the angular velocity 6, of the input shaft. In addition, by having the
angular momentum J,w, of the gyrowheel very large, a rate gyro is
capable of measuring small angular velocities quite accurately. The
value of #, can be measured by attaching a scale to the outer gimbal and
a pointer to the shaft extension of the inner gimbal, as shown in Fig. 14.8.
Usually, it is desired to have an electrical output signal which is propor-
tional to 6,. This is accomplished by using a synchro pick-off.
Integrating Rate Gyro. The integrating rate gyroscope shown in
Fig. 14.9q is referred to as an HIG gyro (hermetically sealed integrating
gyro).! This single-degree-of-freedom gyroscope is very rugged and
extremely accurate. The inner gimbal, or can, is hermetically sealed
and filled with an inert gas which acts as a neutral atmosphere. The
outer case is filled with a viscous fluid whose density is such that the
inner gimbal neither floats nor sinks but rather remains suspended.
Thus, the load on the jeweled bearings is negligibly small in order to
minimize the effects of drift. A schematic diagram for the operation of
an integrating rate gyro is shown in Fig. 14.9b. This illustrates that a
rotation of the outer case about the y axis causes a precession of the
gyrowheel about the z axis. By placing an electrical pickup on the
output shaft, a signal is obtained which is a measure of the angular
position 6,. Although at first glance the integrating rate gyro looks
quite different from the rate gyro of Fig. 14.8, actually both gyros are
quite similar in many respects. A motion about the y axis of an inte-
grating rate gyro causes the gyro to precess about the z axis, as was the
case for the rate gyro. The major distinction is that an integrating rate
gyro does not have a restraining spring, -but rather the viscous friction
of the fluid between the inner gimbal, which is a cylinder, and the outer

‘1 C. 8. Draper, W. Wrigley, and L. R. Groke, The Floating Integrating Gyro and
Its Application to Geometrical Stabilization Problems on Movmg Bases, Aeronaut,
Eng. Rey., vol. 15, no. 6, June, 1956.
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gimbal, which is also a cylinder, produces a torque 7, which opposes
precession. That is, _

T.= -C—; (14.10)

where C is the coefficient of viscous friction between the inner gimbal
and the outer case. Substituting 7, from Eq. (14.10) into Eq. (14.7)
and noting that the viscous friction C, of the bearings is negligible com-
pared with C,

J.p%, + Cpb, = J,w.pb,

(a)

Fia. 14.9. HIG gyro.
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Solving for 6, yields -
Juwo/C , Sy,

- J @, _ - .

where r = J,/C. By making the value of C large and the value for
J, small so that the time constant is negligible, the output angle 6, is
proportional to the input 6, rather than the rate of change of 6,, as is:
the case for the rate gyro. Thus, this device is called an integrating-
rate gyro or sometimes an “integrating gyro.” : IR

14.5. Stable Platform. The primary member of a stable platform is
the stable element. The stable element is orientated so that one axis

always points in a north-south direc-

& tion, another in an east-west direction,
P and a third in a vertical direction, as

s is shown in Fig. 14.10. Three ac-

N celerometersare mounted on thisstable

= ! element at right angles to each other

§ to measure acceleration in the north-

>4 south, east-west, and vertical direc-

s tions. Successive integration of the

output of each accelerometer yields

velocity and then displacement. The

- three components of displacement

F16. 14.10. Orientation of the stable  determine the position of the vehicle.
element with respect to the earth.

Because the accelerometers cannot
distinguish acceleration of the vehicle from the acceleration of gravity, it
is essential that the north-south and east-west accelerometers be mounted
in a horizontal plane. Otherwise, each accelerometer would measure a
component of the acceleration due to gravity, which would be interpreted
by the computer as an acceleration in the direction of motion of the
particular accelerometer whence the signal came. Similarly, the vertical
accelerometer would yield an erroneous signal if it did not maintain its
vertical direction. Thus, it is essential that the stable element be main-
tained in its proper orientation to obtain an accurate measurement of
position.

As is shown in Fig. 14.11q, a stable platform utilizes a set of gimbals
mounted in bearings so that the motion of the vehicle is not transmitted
to the stable element. However, because of bearing friction and other
extraneous disturbances, it is possible for the stable element to rotate
from its reference orientation. Such motion is detected by the use of
three gyroscopes, as is shown in Fig. 14.11b. The plane of the inner
gimbal and gyrowheel for each gyroscope is perpendicular to the axis
about which rotation is to be detected. For example, a rotation about
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F16. 14,11. (a) Stable platform; (b) stable element,
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the vertical axis causes a corresponding precession of the vertical gyro.
In turn, the electrical pick-off sends a signal to the azimuth gimbal
servomotor, which applies a torque to return the stable element to its
reference position.

To maintain a fixed attitude as shown in Fig. 14.10, it is necessary to
compensate the orientation of the stable element for the effect of the
rotation of the earth and motion of the vehicle relative to the earth. A

Instruments .

Fi6. 14.12. (a) Stable platform with internal gimbaling; (b) stable element of a stable
platform with internal gimbaling.

computer automatically corrects the reference orientation for rotation of
the earth by sending an electrical signal to each torque motor which is
incorporated in each gyro. The torque motor of a gyro applies a torque
to precess the gyro which thus changes the reference position, or orienta-
tion, of the gyroscope. The electrical pick-off detects this change and
sends an electrical signal to the appropriate gimbal servomotor so that
the stable element follows the reference position determined by each
gyroscope. In addition to compensating for rotation of the earth, it is i
also necessary for the computer to take into account the motion of the
vehicle with respect to the earth, This motion is obtained by integrating
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the three mutually perpendicular accelerations of the vehicle, as was
previously discussed.

In the design of a stable platform,! often a considerable savings in
+ weight and space may be realized by using the internal-gimbaling scheme
shown in Fig. 14.12a rather than the external gimbaling illustrated in
Fig. 14.11a. 'The outer gimbal is seen to be the same for either internal
or external gimbaling. However, the middle gimbal now becomes a split
beam, and the inner gimbal is simply a sleeve. The stable element con-
sists of two tables connected by a solid post, as is shown separately in
Fig. 14.12b.

14.6. The Control Loop. From Figs. 14.11 and 14.12, it is to be noted
that a basic similarity exists in the control of the position of the stable
element due to roll, pitch, or azimuth. A rotation of the stable element
is sensed by the appropriate gyro, which sends an electrical signal to the
corresponding torque motor to return the stable element to its reference
position. The effect of roll, pitech, or azimuth may be considered
independently.

In the following, it is shown how to obtain the block diagram deseribing
the control of the azimuth position of the stable element.? Similar tech-
niques may be used to determine the response due to roll or pitch. By
designating the reference direction of the azimuth gyro as ¢, and the angu-
lar position of the stable element as ¢., then ¢, — ¢, is the rotation of the
stable element from the reference or desired direction. This error causes
a precession of the gyro, which in turn sends a signal to the azimuth torque
motor to correct the orientation of the stable element, i.e.,

Tw = ""Km(d’c - ¢r) = Km(¢r - ¢c) (14'12)

where K, is the gain for the corrective action of the torque motor.

Because of the precision bearings which support the stable element,
the damping may be considered as negligible. The motor torque T
applied to the table is resisted by the inertia of the table and the load
torque.

Tn = Jp’¢. + T (14.13)

where 7' is the sum of the extraneous torques such as that due to gimbal-
bearing friction. The block-diagram representation for the over-all
control loop is obtained by combining Eqs. (14.12) and (14.13) and
substituting s for p, as shown in Fig. 14.13a. This is the basic control

'R. H. Cannon and D. P. Chandler, Stable Platforms for High Performance
Aircraft, Aeronaut. Eng. Rev., vol. 16, no. 12, pp. 42-47, December, 1957.

t R. H. Cannon, Jr., Root-locus Analysis of Structural Coupling in Control Sys-
tems, Trans. ASME, J. Appl. Mechanics, vol. 81, ser. E, no. 2, 1959.

@
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loop whose characteristic equation is

Je* + K, =0
or 8%+ —I%' =g+ K=90 (14.14)

where K = K,,/J and J = J; + J, is the combined inertia of the upper
table J; plus that of the lower table J;. The G(jw)H (jw) polar plot for
this system is seen to lie entirely along the negative real axis, as is shown
by the solid line in Fig. 14.14a. The corresponding root-locus plot is
shown in Fig. 14.14b.

¢r + l+Tll o K L ¢¢
?_ T+rs i +O Je? v

()

F1e. 14.13. Block diagram for azimuth control of a stable element with a rigid post.
(a) Uncompensated system; (b) system with series phase-lead compensation.

To stabilize the operation of this system, it is necessary to use phase-
lead series compensation to reshape the G(jw)H (jw) plot, as is shown by
the dashed-line loci in Fig. 14.14a. The addition of series lead compensa-
tion to the servo controller results in the block diagram shown in Fig.
14.13b, for which the characteristic equation is

J82(1’28 + 1) + Km(118 + 1) =0 )
or 82 (s + 1—) + K(s + l) =0 (14.15)
T2 T1

where K = 7,K,,/reJ. The resultant root-locus plot is shown in Fig.
14.14c¢.

In the preceding analysis, the azimuth post connecting the upper and
lower tables was considered to be rigid. An investigation of the effects
of the limberness of the post is accomplished as follows: The summation of
torques acting on the upper table is

: Zle=Tw— T+ K. (¢e, — b)) = J18%¢,,
or (/182 + K,)¢pe, — Kopoy = To — T (14.16)
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where K, is the torsional spring constant for the azimuth post.- The
angular position of the upper table is designated by ¢., and that of the
lower table by ¢.,. Similarly, from the summation of torques acting on
the lower table, it is found that

2T, = —K.(¢o, — &) = J282¢,,
or (J232 + Kl)¢¢| - Ka¢c1 =0 (14.17)

Elimination of ¢., between Eqs. (14.16) and (14.17) gives

= J2(82 + K‘/Jz) _
b = TTlst + Ko+ Ja/dd T = 19

_ (8 + j“’ﬂ:) (8 - j“’ﬂ:) -
- J182(8 + jwn,) (8 — jwm) (Twm TL) (14.18)
_ K1+ dy) _ ’ K.
where N A o e and om = 4[7,

The block-diagram representation for Eqs. (14.12) and (14.18) is

W=+ Real
g axis

—_——

G (jw) H (jw)
(a)
4

J
A

1Inc

K inc
A \&3

K=0 Real - Real
K=0 axis -, axis
Y

inc

K
|

(b) © {e)

Fya. 14.14. Azimuth control of a stable element with a rigid post. (a) Vector loci plot;
(b) root-locus plot for uncompensated system; (c) root-locus plot for system with
series phase lead. :
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shown in Fig. 14.15a. The characteristic equation for this system is
8%(8 + jon,) (8 — jwn) + K(s + jwn)(s — jom) =0  (14.19)

where K = K,,/J:. The corresponding root-locus plot is shown in Fig.
14.16a. It is again necessary to use phase-lead series compensation to
stabilize this system, as is indicated in Fig. 14.15b.

TL
¢ 4+ X, +N 1 (s+iwg,) (s=jwn,) ey
_? g2 (s+jwy,) (8=jwy,,)
(a)
TL
¢ + g 1*ns o+ AT 1 (s+jws) (8=jwa,) - &,
_? 147, ' Jg? (s+jwp) (s=jws) [ - -

(b)

Fia. 14.15. Block-diagram representation for azimuth control of a stable element
with a limber post (torque applied to upper table). (a) Uncompensated system;
(b) compensated system.

The corresponding characteristic equation which includes the effect
of the series compensation is '

. . 1 . . 1
s+ an) s = jon) (54 1) + Ko+ jon)s = on) (54 1) = 0
(14.20)
where K = 2 K, The root-locus plot for Eq. (14.20) is shown in Fig.

T2 J 1
14.16b.

For a rigid post, it makes no difference whether the torque motor is
attached to the upper or lower table. However, for a limber post, the
torque motor must be attached to the upper table, on which the gyros are
located, for otherwise it becomes impossible to stabilize the system by
ordinary means. This is easily proved as follows:

With the torque motor connected to the bottom table, the summation
of torques acting on the upper table gives

(J1s2 + K)o, — Koo, = 0 (14.21)
and similarly the summation of torques acting on the lower table is

(J252 + K)o, — Koo, = T — Ty (14.22)
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9 @n,
inc
inc} A
Real
2 -

\t
(")

axis
)
O =Wy,

o

Y

iy

/r1 axis

w,,z

(—wnl

(%)

F16. 14.16. Root-locus plot for control of stable element with a limber post (torque

applied to upper table).
compensation.

(a) Uncompensated system ; (b) system with series phase-lead

\J

Real
t s

Fm 14.17. Root-locus plot for uncompensated control of stable element with a limber

post (torque applied to lower table).
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Elimination of ¢., gives
Kl/ J lJ 2

¢Gx = 82(82 + m (Tn - TL) (1423)

- Kc(Jl + Jz)
where W = " 7.7;

The root-locus plot for this system in which torque is applied to the
lower table is shown in Fig. 14.17. This is a system which cannot be
stabilized by simple compensation. Thus, it is interesting to note that,

Vertical

/__-’

F1a. 14.18. Force acting on a missile.

for a rigid post, it makes no difference whether the correcting torque is
applied to the lower or upper platform, whereas for a limber system the
effect is somewhat astonishing,

14.7. Missile in Flight. When a missile is in flight, it is subjected to
a number of forces such as aerodynamic forces, gravitational forces, and
the thrust which propels it, as is shown in Fig. 14.18. Aerodynamic
forces are conveniently handled by resolving them into a component
parallel to and a component perpendicular to the direction of motion, or -
heading, of -the missile. The: aerodynamic eomponent parallel to the"
direction of motion is designated as the drag D, and the perpendicular
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component is called the lift L. The intersection of the line of action of D

and L is called the center of pressure (cp).

Although the vehicle is pointed at an angle ¢ with respect to the
vertical, the direction of motion is inclined at an angle 8 from the vertical.
Because ¢/(+90" jg g unit vector in the direction of motion, as is shown in
Fig. 14.19a, the velocity may be written

V = Veito+o" (14.24)
Differentiation of the velocity with respect to time yields the acceleration

av d dV

A= T = V_t eI+ | gitoo0) 2 (14.25)
Noting that
d .do do
— @7(0+90%) — j(0+90%) = j90° 63 (8-490%)
@’ &® @’
then = %—V eI+ Vd—o e/ (#+1809 (14.26)

The acceleration has a component dV /dt parallel to the direction of
motion and a component V(d8/df) which is perpendicular, as shown in

Fig. 14.19b.
0+ 180° E
Ve ve ™
6+90°
(a) (b)

Fra. 14.19. Vector representation of (a) missile velocity and (b) missile acceleration.

For small angles of attack (i.e., less than 10°) the lift force is approxi-
mately proportional to the angle of attack, that is,

L=K;a

where K is the lift coefficient (pounds lift per unit «).

Unlike lift, the drag force D tends to remain constant for small angles
- of attack. The summation of forces acting perpendicular to the direction
of motion of the missile yields

MV%? — Kio + Fsin (@ + 8) + Mg sin 8 (14.27)
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which for small values of a + § and 8 becomes
uv g-g — Mgb = (K1, + F)a + Fs (14.28)

where § is the angle between the thrust force F and the centerline of the
missile, as shown in Fig. 14.18.

Vertical

reference + Compensating - - ;i cci >
network »{ Servomotor Missile ->
Vertical _
sensing gyro

F1a. 14.20. Block-diagram representation for control of missile in vertical flight.

Similarly, the summation of torques acting about the center of gravity
yields

ZT —J‘;tf— KLa(:OSa—Dsina—FLsina—C,,‘é—? (14.29)

which for small values of « and 3 gives

dt‘f +C, d"’ = —Kia — Da ~ FLs (14.30)

From Fig. 14.18, it follows that
¢=0+4+« (14.31)

Thus, from Egs. (14.28), (14.30), and (14.31) the over-all relationship
between ¢ and § is

6= —F[LMVp + (K. + F — Mg)L — (K. + D)]s
JMVp® + [J(K. + F — Mg) + C,MV]p?
+ [Co(KL + F — Mg) + (K. + D)MV]p
— (K + D)Myg

(14.32)

The characteristic equation for the preceding result is seen to be of the
third order.

A typical block diagram for controlling the flight of a missile is shown
in Fig. 14.20. The servomotor controls the direction of the angle of
thrust, and the vertical sensing gyro measures the angle of inclination ¢
of the missile with respect to the vertical.




CHAPTER 15

NONLINEAR SYSTEMS

16.1. Introduction. In the earlier chapters, it was shown how certain
nonlinear relationships could be linearized by approximating the non-
linear function by the tangent to the curve at the point of interest. In
this chapter, it is shown how other types of nonlinearities may be

}y y
Yoo Y
x m 2 3Ir  wt
-Y -Y

_— %

v i""o sin wt
G
31r->

wt{'

F1a. 15.1. Characteristics of on-off element.

treated. For example, phenomena such as dead band, backlash, satura-
tion, and on-off type of action may be investigated by the use of the
describing-function technique. Sampled-data systems may be handled
by an interesting extension of the ordinary techniques for linear systems..
Phase-plane methods are applicable for systems which are characterized
by first- or second-order nonlinear differential equations.

311
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16.2. Describing Functions., Certain types of nonlinear elements are
characterized by the feature that, if the input is a sinusoid, then the
output will have a periodic waveform. The period of the output wave is
the same as that of the input.’-* In Fig. 15.1 are shown the operating
characteristics of an on-off type of control element. When the input z is
greater than zero, the value of the output is ¥o. When z is less than zero,

| Y v
Slope=k
-Dj2 | DJ2 l_ ——————— | 48
l ! —- X t / + 4 > 0t
{ B /71' 27 3ar\
T8
»} }-—(x—D/z)
|
| | ;
ﬂ..—
x x=x; sin wt
2%
3z
Yot

Fi1a. 15.2. Characteristics of linear element with a dead zone,

the output is — ¥,. The system would be in equilibrium at its reference
operating condition when y = 0, but this is impossible with an on-off
type of element. A plot of the sinusoidal input z = x, sin wt is drawn
vertically down from the on-off contactor characteristics. The cor-
responding output is shown horizontally to the right.

Another nonlinear characteristic which is frequently encountered is
that of a dead zone, or dead band, which is shown in Fig. 15.2. When

! R. J. Kochenburger, A Frequency Response Method for Analyzing and Synthe-
sizing Contactor Servomechanisms, Trans. AIEE, vol. 69, pt. 1, pp. 270-284, 1950.

*J. J. D’azzo and C. H. Houpis, “Control System Analysis and Synthesis,”
MecGraw-Hill Book Company, Inc., New York, 1960.

*J. G. Truxal, “Automatic Feedback Control System Synthesis,” McGraw-Hill
Book Company, Inc., New York, 1955.
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the value of D is zero, this becomes a linear system. When —D/2 < z <
D/2, the value of y is zero. For z > D/2 the output is

y=k<x—l§))=k(xosinwt—g) (15.1)
With the aid of Fig. 15.2, it follows that
D .
3 = Toslin B
. D .
== -1 3
or B8 = sin 3z, (15.2)

For a sinusoidal input to such nonlinear elements, the output y is
periodic. Generally, the periodic output wave y which is obtained for a

WARY R

F1a. 15.3. Odd function.

nonlinear component is an odd function. As shown in Fig. 15.3, an odd
function is one for which f(6) = —f(—6). Any odd function may be
approximated by the following series of sine terms:

J(6) = Ao+ Bysin 6 + By sin 20 + B;sin36+ - - - (15.3)

Integration of the preceding expression between the limits § = 0 and
0 = 2r yields

/o * 1(6) d6 = A, / 0 + 2 B. [ > sin n6 o (15.4)
Because B, / 2 sin no de =0 (15.5)
then Ao =~ / 1(6) do (15.6)

The term A, is thus seen to be the average value of the periodic func-
tion for one period. That is, the constant A, is the area of the function
J(6) divided by the length of the period.

The multiplication of Eq. (15.3) by sin 8 and the integration of each
term over the period yields

/02' 7(6) sin 6 d8 = A, /02" sin 0 d6 + B, /o > sin? 0 do

+ z B, /02' sin 6 sinnddo (15.7)

n=2
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After evaluating each integral on the right-hand side of Eq. (15.7), it is
found that each term becomes zero except

2x
BIA sin2 8 df = Br;r

2x
Thus B, = }r [) £(6) sin 6 do (15.8)

Upon multiplying Eq. (15.3) by sin n6 and integrating over the period, it
may be shown, in general, that

2%
B, = }r [) #(6) sin n6 dé (15.9)

Series Representation for an On-Off Component. Let it be desired to
determine the series expansion for the on-off element shown in Fig. 15.1.
The general form of the series is

y=Ay+ Y B.sinng (15.10)
n=1

Because the average value of the function is zero, A = 0. The constant
coefficient B, is

1 /2' . 2 /' .
B, == f(0) sin n6do = = | f(6) sin nd do (15.11)
Ll ) T Jo

Substitution of f(6) = Y, gives

B, = 2Yo /’ sinn0do = 2% [cosnol; = 2X0 (15.12)
T Jo nr nr
Thus Bi=2Y, Bi=o¥s Bs=—VYs ... (15.13)
T 3r 5r
and 0=Ay=B;,=By=Bg= - - - (15.14)
The coefficients A, Bs, By, Bs, . . . are always zero when the value

of the function from 7 < 6 < 2r is the negative of the function for
0 < # < 7, as is the case for the functions shown in Figs. 15.1 and 15.2.
This is usually the case for this type of nonlinearity which occurs in
control components.

The resultant series expression for y is

y= % Y (sin ot + %sin 3wt + % sin 5wt + - - ) (15.15)

In Fig. 15.4 are shown the original square-wave function and the first
two terms of the series expansion for this function. The sum of all the
terms would yield the original periodic function. However, the funda-
mental component B, sin wt is seen to yield the most significant con-




NONLINEAR SYSTEMS 315

tribution. Good results are obtained in the analysis of such nonlinear
control elements by approximating the output by its fundamental
component.
y = B; sin ot (15.16)
The two major reasons why the fundamental component yields good
results in approximating the characteristics of a nonlinear element are:
1. The fundamental component yields the most significant contribution
to the output.
2. The higher-frequency terms such as Bj; sin 3w, B sin 5wt, . . . are
progressively attenuated more by the other linear components in the

Ly
/\(-Bl sin wt= %sin wt
Y
B, sin 3wi= 2 sin 3wt
SIN I wl= w— SIN 3 Wi
e /”(/ 3 3
\ / /
\ / 7\
\ ! ! \
+ 4 ! 3 -
\ / T / \ 2r wt
\ / \
\ / \
\/ J/ \v/

Fig. 15.4. Graphical interpretation of series expansion for a square wave.

system, and therefore they have less of an effect upon the operating
characteristics of the system.

Series Representation of Dead Band. Because of the symmetry of the
characteristics shown in Fig. 15.2, all the coefficients Ao, By, By, . . .
will be zero. The approximation for this function is given by Eq.
(15.16), where

B, = %AZ’J’(G) sin 6 d6 = %[)’f(o) sin 6 o (15.17)

From Fig. 15.2, it is to be seen that

_ 0<o<8
fo) =0 l(r—B)SGSr

and f(0)=k(x-—1§))=k(xosin0—xosin,8) BLo<(x—08
(15.19)

(15.18)
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. x=—p8
“Thus B, = 2—’::”9 [ (sin 0 ~ sin ) sin 0 ds
_ 2kzo| (6 _ sin26 . * -
== [(§ 1 ) =+ cos 0 sin ﬁ],
- 21:::0 <1r —2 28 _ sm22/3> (15.20)

The ratio y/z = (B, sin wt)/(x, sin wt) describes the operation of this
nonlinear component. From Eq. (15.20), it follows that

N=¥=2 =2 — 26— sin26) (15.21)

where N = y/z is called the describing function because it deseribes the

relationship between the fundamental output y and the input z.
Because g8 = sin~! (D/2x,), a plot of N/k versus 2x,/D may be con-
structed as shown in Fig. 15.5.

1'0_’ When 2, < D/2, that is,
0.8[- 2z,
o i F S '

5|4 0'6_— the output is zero. As the dead-
Z?-* 0.4k band zone D becomes small in com-
parison with z,, then N approaches
0.2+ k, which would be the characteristic
0 | . . 1 . 4 , ofalinearelementin whichy = kz.

0o 2 4 6 8 16.3. Stability Analysis. In Fig.
o 15.6¢ is shown a control system

D/2 . .
. . which has a nonlinear component
F1a. 15.5. Plot of describing function for represented by N. The com-

linear element with a dead zone. A

ponent N may be considered as a
variable gain. The value of N, the variable gain, depends upon the
amplitude of the input signal z,. The frequency response for linear ele-
‘ments such as G(jw) depends on frequency only.

In Fig. 15.6b is shown a typical polar plot for G(jw). If the gain is
doubled, the polar plot would go through the —1 point. Thus, the
system is unstable if N > 2.

For k = 4, it follows that N > 2 when N/k > 24 = 0.5. Thus, from
Fig. 15.5 instability results when z,/(D/2) > 2.5, or 2o > 1.25D. If the
value of k is 1, instability results when N/k > 2. Instability cannot
occur for this case because the maximum attainable value of N/k is 1.
In effect, a describing function N represents the nonlinear element whose
characteristics are a function of the amplitude of the input signal but are
independent of the frequency. The characteristics of a linear element
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AJ
r{jw) j
= I+<t> e Dl e [ e =7 T aR:g
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F1a. 15.6. Stability analysis of system with a nonlinear element.

G(jw) are a function of frequency only and are independent of the
amplitude of the excitation.

Another method for investigating stability is to note that the over-all
system response is

c(jo) _ _ NG(jw)

(o) = T+ NGGa) (15.22)
Instability results if
NG(jw) = —1
or Gjw) = —% (15.23)

By plotting G(jw) and —1/N as shown in Fig. 15.7, an unstable system is
indicated if the two curves intersect. The function —1/N ‘is plotted by
obtaining N/k for various values of z,/2D from Fig. 15.5 and then com-

'Y Aj
1 -1 (k= '
“-ﬁ(k-u N (& 1’7
. 15 25/ Real 2.5 oo Real
-2 -1 0 axis -2 -1 0 axis
G(jw) G(jw)
(a) (b)

Fie. 15.7. Plots of G(jw) and —1/N for (a) k = 4 and (b) k = 1.
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puting —1/N from the equation

1 1
b Al i/ (15.24)
For example, when z,/2D = «, then N/k = 1 so that —1/N = —1/k.
Thus, for k = 4, then —1/N = —34 and fork = 1, then —1/N = —1.

The values of x,/2D are italicized in Fig. 15.7. An unstable system
results for k£ = 4, as shown in Fig. 15.7a. The critical value is z,/2D >

Ly

w1

T x=xg sin wt

25

wtY
F1a. 15.8. Characteristics of on-off element with hysteresis and dead zone.

2.5, or zo > 1.25D. For the case in which k = 1, the system is always
stable,

16.4. Describing Functions with a Phase Shift. The preceding dis-
cussion was limited to describing functions in which there was no phase
shift between the input £ = x, sin f and the fundamental component

Yy = Bysin t. In Fig. 15.8 is shown an input-output relationship for .

an on-off element which has a hysteresis loop of width A in addition
to the dead band D. As the amplitude z of the input is increased from
zero, the contactor does not close until x exceeds the value (D + A)/2.
The contactor then remains closed until the value of the input becomes
less than (D — A)/2. Thus, in the region between (D — A)/2 < z <

&
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(D + A)/2 the value of the output depends upon the past history, or the
manner in which the input was varying. A similar phenomenon occurs
for negative values of z. The angle 8, at which the contactor closes and
the angle 8, at which it opens again are obtained from Fig. 15.8 as follows:

. _D+A
AT, (15.25)
. D—-A ‘
sin B, = 220

In Fig. 15.9 is shown an enlarged view of the contactor output and the
first harmonic component. The actual square-wave output is sym-

/' \<-B, sin (wt+)

o 8, w}z | B, «
B1+8,
-z

Fia. 15.9. Fundamental component of contactor output.

metrical about the angular position (8, + 82)/2. The phase shift ¢
is given by the equation
_T_ Bt B
| ¢ = 3 3 (15.26)
The amplitude of the fundamental harmonic component is
2Y0 a x/24+(B2—B1)/2

B; = sin0d0=—2TY°c0s0]

ai /2 —(B2—B1)/2
) (RN Rl ] (15.27)
T 2
The describing function which is the ratio of the output (as approxi-
mated by the fundamental harmonic) to the input is
y_ B sin (wt + ¢)
z Zo 8in wit

N=
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Fia. 15.10. Amplitude and phase angle of describing function.

whence the magnitude of the deseribing function is
_Bi_4Y, . B:— B
IN| = 7. = wz, T3 (15.28)

Convenient graphs as shown in Fig. 15.10 for determining the ampli-
tude |N| of the describing function and the phase angle ¢ are obtained by
rewriting Eqs. (15.28) and (15.26) in the following form,

D 8D . f—f
7N =20 5 (15.29)

T _Hef(D L & -t (2 A

and ¢ = 5~ 5 [sm (2:';0 + 2%) + sin (2% 21:0)] (15.30)
In Flg 15.11 is shown the curve of G(jw) for the system shown in

Tig. 15.6.

b/

- 1 -0.5 0  Real
- axis

Gjw)

4/D=05
D/Y, =1/

Fre. 15.11. Plot of G(jw) and —1/N.
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Because N = |N|ei* and — N = |N|e##18) then

1

~1_
N

The curve of —1/N of Fig. 15.11 is drawn for the case in which A/D = 0.5
and D/Y, = 14. Values of D/2z, are italicized. Instability results

when D/2z, > 0.2, or 2z,/D < 5, or xp < 2.5D.

e—i(4—180%)

16.5. Sampled-data Systems. A schematic representation of a sampler

and holder is shown in Fig. 15.12a. The sampler switch closes every T

2t) [ Z 2 | j—gm | 30
8
Sampler “Holder
(a)
hx(¢t)
> £
(b)
Ay(¢) —
Vd ~
pad o~
- ~
~.
\T‘-I'j__
t

0 T 2T 3T AT 5T 6T 7T 8T 9T
(c)
x*(2)

1T

0 T 2T 3T AT ST 6T 7T 8T 9T
(d)

F16. 15.12. (a) SBampled-data system; (b) input to switch z(f); (c) output at holder
y(2); (d) output at switch z*(t).

> ¢

sec to admit the input signal z(f). The holder retains this value of z(f)

until the next sample is taken. A typical plot of z(f) is shown in Fig.
15.12b. If x() is sampled every 7 sec, the output y(f) of the holder is a
train of pulse functions as shown in Fig. 15.12¢.

Recently, numerous systems have been devised which utilize digital
computers as control elements. Such systems are generally sampled-
data systems, because the information fed into a digital computer is the

BT TSR —

T o - S AR P TP TS 18 T A, T 1 AT R
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value (sample) of the corresponding information at some instant of
time. The computed output remains unchanged until new information
(another sample) is fed into the digital computer. Another example is
guidance systems that utilize radar scanning in which signals are obtained
at discrete increments of time.

The Laplace transform Y (s) for the train of pulses y(¢) is obtained by
application of the real-translation theorem. Thus

¥ = 2D 1 - oy . ZD (y _ ooy
+ 2D ey g
= L2 (0) + a(D)e™ + 2@Dem 4 - -
1—em Y

8 $

==-=° z e(nT)ere = L= xu (15.31)

n=0

where X *(s)

z 2(mT)e T, z(0) is z(t) at ¢t = 0, z(T) is z(t) att = T,
n=0

and z(nT) is the value of the input z(¢) at time £ = nT. The symbol *
should be read ‘“‘star.” The inverse transform of X*(s) is

a*(t) = £X*(s)] = £ z(0) + x(T)eT* + z(2T)e2T* + - - ]
2(Qur(®) + z(Twuat — T) + z(2T)us(t — 2T) + - - - (15.32)

The term z*(f) is a train of impulses, as shown in Fig. 15.12d, in which
the area of each impulse is the value of z(nT) at the sampling instant.
From the preceding analysis, it follows that the signal z*(f) coming from
the sampler switch may be regarded as a train of impulses, and the
transform for the holder is in effect (1 — e~7%) /5.6

In Fig. 15.13a is shown a sampling switch followed by a linear element
whose transfer function is G(s). The transfer function for the holder

! Kochenburger, op. cit.

2J. C. Gille, M. J. Pelegrin, and P. Decaulne, “Feedback Control Systems,”
McGraw-Hill Book Company, Inc., New York, 1959.

* 3J. R. Ragazzini and L. A. Zadeh, The Analysis of Sampled Data Systems, Trans.
AIEE, 71, 1951.

*J. R. Ragazzini and G. F. Franklin, “Sampled-data Control Systems,” McGraw-
Hill Book Company, Inc., New York, 1959.

* W. K. Linvill and R. W. Sjttler, Design of Sampled Data Systems by Extension of
Conventional Techniques, Mass. Inst. Technol. Rept. R-222, Digital Computer Lab.,
1953.

SE. I. Jury, Analysis and Synthesis of Sampled Data Control Systems, Trans.
AIEE, Communications and Electronics, September, 1954.
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(1 — T /s is included in the over-all function G(s). The value of
C(s) is ,
C(s) = X*(8)G(s) (15.33)

The response c(f) is that due to the sum of the impulses which occur
before time ¢, thus,

e(t) = z(0)g(®) 0<t<T
c@®) = z(0)g(®) + «(Thg(t — T) T<t<2T
c(®) = z(0)g@®) + z(Tgt — T) + z(2T)gt — 2T) 2T <t < 3T

......................................

(15.34)

where g(t) = £7'(G(s)] represents the response to an impulse occurring
at t =0, g(¢ — T) is the response to an impulse occurring at ¢t = 7,

X(s): A X.(S): G(s) C(s)

(a)

R(s) +~ Es) [~ E’(s) Gy Gl

B(s)

H(s) =

(b)
Tre. 15.13. (a) Sampling switch followed by a linear element; (b) sampled-data system.

etc. The value of ¢(nT) at the sampling instants is

c(0) = z(0)g(0)
e(T) = z(0)g(T) + 2(T)g(0)
c@T) = z(0)g(2T) + z(T)g(T) + 2(2T)¢(0) (15.35)

e(nT) = z(0)g(nT) + =(Tgl(n — DT] + z@Tglln — 2T) + - -~
1t follows from Eq. (15.31) that C*(s) is
C*(3) = ¢(0) + e(Te T + c(2T)e T + - - - (15.36)
With the aid of Eqgs. (15.35) C*(s) may be written in the form
C*(s) = z(0)[g(0) + g(T)e™ + g(2T)e™*™* + - - °]
+ 2(T)e™g(0) + g(T)e™ + g2T)e ™ + -+ ]
+ 2(2T)e*"[g(0) + g(T)e ™ + g(2T)e'"’ <] (15.37)
or C*(s) = [2(0) + z(T)e ™ + xz2T)e*T + - - 1[g(0) + g(T)e™™
+ g@T)e 2 + + - -] (15.38)
or C*(s) = X*(s)G*(s) (15.39)
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In Fig. 15.13b is shown a sampled-data system in which the actuating
signal is the sampled quantity. For the comparator it follows that

E(s) = R(s) — B(s)
and thus © E*(s) = R*(s) — B*(s) (15.40)

The equation of operation for the sampled-data system of Fig. 15.13b is
obtained as follows:
B(s) = E*(s)G(s)H(s) (15.41)

The preceding expression has the same form as Eq. (15.33) and thus
may also be expressed in the form given by Eq. (15.39), i.e.,

B*(s) = E*(s)[G(8)H()]* = E*(s)GH*(s) (15.42)

where GH(s) is another representation for the product G(s)H(s). It is
to be noted that GH*(s) is quite different from G*(s)H*(s). Equation
(15.40) describes the operation of the comparator, thus,

E*(s) = R*(s) — B*(s) = R*(s) — E*(s)GH*(s)

or E*(5) = H%% (15.43)
The output C(s) is
C(s) = E*(s)Q(s) ' (15.44)

Substitution of £*(s) from Eq. (15.43) into Eq. (15.44) gives the following
over-all relationship for C(s):

_ _GR*(s)
€@ = 11 em
The application of Laplace transforms to sampled-data systems yields

starred (*) terms which signify infinite series. The simple substitution
2 = ¢T* (15.46)

(15.45)

greatly simplifies the analysis of such systems. The equation for X *(8) 18
X*(s) = z(0) + 2(Te~T* + z(2T)e2Tr - - - (15.47)

The substitution of z = e7* gives

X(2) = z(0) + x—(:;) + x(%') + - = Zox(nT)z"' (15.48)

where X (2) designates the z transform of X *(s).
The 2 transform for a unit step function applied to a sampler is

K4

Tz—-1

The preceding series is convergent for [z > 1. As was mentioned with
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regard to Laplace transforms in Chap. 5, the fact that a transform is
convergent for a certain range of values suffices to verify its existence.
Because 2/(z — 1) is the z transform for a unit step function, this is
also the z transform corresponding to the Laplace transform 1/s.
For a delayed step function e~7¢/s,

X@) =04 4+

——  (15.50)

Thus, the effect of a delaying factor is to multiply the basic transform by

1/z.

For an exponential e~% applied to a sampler, the z transform is

X(z)=1+2“—’+(

z

e—aT 2

)

+...=

—_ e—-aT

2 (15.51)

The preceding 2z transform for e~* is also the z transform corresponding
to the Laplace transform 1/(s 4+ a).
listing of z transforms and corresponding Laplace transforms.

TaBLE 15.1. 2 TRANSFORMS

In Table 15.1 is given a partial

Description e Laplace z transform
function transform
Unit impulse ................ ua(t) 1 1
Unitstep................... u(t) 1 - d
8 z—1
1 Tz
Ramp.............c.cun... t — —
P 8! (z — 1)
. 3 T%(z + 1)
adratic.................. — = —_—
Quadratic > pr %G — 1y
1 z
Exponential................ eat _
Po s+a z —eoT
1 1 r —a I i
Exponential times cos —¢..... e cos Tt ,,,,,,,, e
. 1
Constant raised to power ¢....| a7 a>0
P — 1/T)na| z — ( )
Constant raised to power ¢ )
z
times cos %t .............. a*'T cos %t ........ parapd (a > 0)
X idal . @ z sin T
Sinusoidal.................. sin wt o F ot 2 — 2zcos 0T + 1
Cosi : 8 2?2 — z cos wT
Sine. .................... €08 w pERI 7 —2coswl + 1
Multiplication by e~=¢. ... ... eatf(t) F(s + a) F(e*aT 4 2)
: 1
Delay by time nT........... f(¢ — nT) e "TeF(s) - F(z)

U
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If a first-order system of the form 1/(s + a) follows a bolding circuit,
the z transform is obtained as follows:

1— Tt
Ot
= l _]_' . _1_ - p—Ts
= (8 P a) (1 — ey (15.52)
The z transform is

Gz) = %(z f 1 =z —ze‘“T) (1 - %)

_ 11 —¢”
az— el

(15.53)

The over-all equation of operation in terms of z transforms for the
system shown in Fig. 15.13b is obtained as follows,

C*(s) = E*(s)G*(s) 7
whence C(z) = E(2)GQ(2) (15.54)

The substitution of the z representation for the corresponding starred
(*) terms in Eq. (15.43) gives

E@) = — 2@

14+ GH(?)
From Eqgs. (15.54) and (15.55), the over-all relationship is

_ G@RE)
C® = T erp)

(15.55)

(15.56)

Illustrative Example. Let it be desired to determine the unit step-
funetion response for the system shown in Fig. 15.13b, in which

6o =1 ="K Ky _ on

and H(s) = 1 for unity feedback.
SOLUTION. For this system G(z) = GH(z), which is

K,\Tz 1 K.\T

where from Table 15.1 the transform for a ramp function 1/s? is Tz/
(2 — 1)2. The over-all z transform for C(z) is

Ce) = K,\T z 2 z

(15.58)

t— (A —-EKDz—-1 z-1 z=(0=KTD
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For 1 — KT > 0, the inverse transform of the preceding expression is
c®) =1 — (1 — KTy (15.59)

Thus the system is stableif 0 <1 — K;7 < 1. When 1l — K,T <Oor
K\T — 1 > 0, the inverse transformation of Eq. (15.58) is

xt

¢ty =1~ (K,T — 14T cos 75 (15.60)

The preceding response is oscillatory. For stability, it is necessary that
0<K,T-1<1.

The application of z transforms is thus seen to be analogous to that of
Laplace transforms.

8 plane

Fra. 15.14. Stability regions for s plane and z plane.

Characteristic Function. In Chap. 6, it was found that a system is
unstable if any zeros of the characteristic function are in the right half
plane. The right half of the s plane may be designated by ¢ + jo,
in which ¢ > 0. The corresponding portion of the z plane is obtained
by noting that

2 = eaT — evTeij
or lz| = |e°T| [e®?]| = T (15.61)

From the preceding result, it follows that, for ¢ > 0, then |z| > 1. As
illustrated in Fig. 15.14, the right half of the s plane corresponds to a
value of z outside the unit circle. Thus, for stability, all the zeros of the
z-transformed characteristic function must lie within the unit circle.
For the preceding example, the characteristic function is

D¢y Duy + NowNaw = 2 — (1 — KiT) (15.62)
This is a first-order equation whose zero is
21 =1-— KlT (15.63)
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For stability, it follows that

This is the result previously obtained from an examination of the equation
for the time response.

The root-locus methods may also be extended to sampled-data systems.
For example, the characteristic function for this system may be written
in the form

z+ K=0 (15.65)
where K = KT — 1.
. ’
/ 1--\< Unit circle
K=2 K=1 K=0 K=-1 K=-2 Real
S =
\.1-/
z plane
-2+

F16. 15.15. Root-locus plot on z plane.

The solid line of Fig. 15.15 is the root-locus plot for positive values of
K, and the dashed line is the corresponding plot for negative values of K.
In applying the angle condition for negative values of K the resulting
angle must be 0° + 360°k rather than 180° + 360°k, where

k=0,1,23, ...

Frequency Response. In applying frequency-response methods to
sampled-data systems, the zeros of the characteristic function are the
zeros of the function 1+ GH*(s) =14 GH(z). To illustrate the
application of frequency-response techniques to sampled-data systems,
let it be desired to determine the value of K,T so that the preceding
system will have an M,, of 1.4. The function GH*(s) is

GH*(s) = GH() = 22T
GH*s) 1
or KT —7=1 (15.66) .

The path of values for z is the unit circle (z = ¢#) shown in Fig. 15.16a.
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-‘The vector drawn from the 41 point to the unit circle is the vector
2 — 1. The corresponding GH*(s) plot is shown in Fig. 15.16b, whence
the required value of KT is

1
K,\T = 08 = 1.25 (15.67)

Thus, in general, the methods previously developed for linear systems
may be extended to sampled-data systems.

AJj

, , . Real
P —2 ' -1 : o axis
Unit circle }
z z—1 }
8 Real y=sin~! 14
axis -17
GH'(s) |
K,T
z plane
(a) (b)
. e
F1a. 15.16. (a) Path of values for z; (b) frequency response GK 7(,8) = 1 1
L _

15.6. Phase-plane Techniques. The phase-plane method is basically
a graphical procedure for determining the transient response of a second-
order system!—¢ which is of the general form

¥+ fHilyy + f2(y,9)y = C (15.68)

where fi(y,9) = a function of y and 3
fx(y,9) = another function of g and y
C = a constant »
~ For the case in which f;(y,%) and f2(y,%) are both constant, Eq. (15.68)
reduces to a linear differential equation with constant coefficients.

- '1 Kochenburger, op. cit.

* D’azz0 and Houpis, op. cit.

* R. L. Cosgriff, “Nonlinear Control Systems,”” McGraw-Hill Book Company, Inec.,
New York, 1958.
* *W. J. Cunningham, “Introduction to Nonlinear Analysis,” McGraw-Hill Book
‘Company, inc New York, 1958. .
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By making the substitution that v = 5 = dy/dt, Eq. (15.68) may be
reduced to a first-order differential equation as follows:

y:a =a—t—d—y=vd—y » (15.69)
Thus, v % + f1(y,0)v + fulyw)y = C
dv L)y |, C

or 7 —f(yw) — —, 13 (15.70)

To illustrate the basic principles involved in the phase-plane method,
the mass-spring system.shown in Fig. 15.17 will first be investigated.

Fia. 15.17. Mass-spring system.

The equation of motion for this system is

Mjij+Ky=0 (15.71)

By letting dy/dt = v, so that §j = v(dv/dy),
dv
Mvd—y = —Ky (15.72)
The solution of the preceding first-order differential equation is

? K y

/“vdv——ﬂ mydy (15.73)
K

or v? A—I§ ¥ =02+ i y: =K, (15.74)

where K, is a constant, y; is the initial displacement of the mass, and »
is the initial velocity.

Plotting Eq. (15.74) in the y, » coordinate system would yield an
ellipse. Because any ellipse may be plotted as a circle by changing the
scale factor, it is apparent from Eq. (15.74) that the desired coordinates
are \/(K/M) y and v.

A phase-plane trajectory is a plot of all corresponding values of y and »
for a given system. In particular, Eq. (15.74) is the equation for the
phase-plane trajectory shown in Fig. 15.18a. For different values of
the constant K,.in Eq. (15.74) different trajectories are obtained as
shown in Fig. 15.18b. This family of trajectories is called a phase
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portrait. The partieular trajectory describing the operation of the
system is determined by the initial operating point (\/ K/M y;, v;).
Because y = [v di, for positive values of » the position y increases and
for negative velocities the value of y decreases. Thus, corresponding
values of y and v proceed in a clockwise direction along the phase tra-
jectories, as indicated by the arrows in Fig. 15.18. From Eq. (15.69),
2,
it follows that the slope of the phase trajectories is g—; = %Z—t‘lz/ Because
v is zero when a trajectory crosses the y axis, then dv/dy = . Thus,
each trajectory crosses the y axis at right angles.

v
\v

(o)
W ()

(a) (b)

F16. 15.18. Phase-plane trajectories for mass-spring system.

The time ¢ required for the operating point to move from any station
(1) on a trajectory to a second station (2), as indicated in Fig. 15.18a,
may be computed as follows,

at=
v
/2] dy
or e —t; = T A — 15.75
T ) VE = K/ (15.75)

The trajectory for any conservative system in which there is no damp-
ing to dissipate energy must be a closed path. If there were damping
in the system, the path of operation would be a spiral in toward the
origin, as is indicated by the dashed line of Fig. 15.18a.

Coulomb Friction. When there is coulomb friction existing between
the mass M of Fig. 15.17 and the surface over which it is sliding, the
equation of motion is

Mj+ Ky = —uMyg v>0 (15.76)
Myj + Ky = uMg v <0 (15.77)
where u is the coefficient of friction. ‘
By making the substitution y, = y + uMg/K, Eq. (15.76) becomes
My, + Ky, =0 (15.78)
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It is seen that g, = y = v and ¢, = Y. The preceding equation is similar
to Eq. (15.71), and thus its solution is

Ky* K uMg\® _
v? 4+ _._M = p2 4 H (y + —K = K, (15.79)
The phase portrait for the preceding expression is a family of circles of

radius /K, whose center is at the point y = —uMg/K. Because Eq.
(15.76) is valid for v > 0, only semicircles above the y axis as shown in

Av

Fra. 15.19. Phase portrait for mass-spring system with friction.

&

Fig. 15.19 may be obtained from this expression. For the case in which
v < 0, the substitution y, = y — uMg/K is made in Eq. (15.77). This
yields

MijrL+ Kyr =0 (15.80)
The solution of the preceding expression is '
©, Kyi? K Mg\?
v? + ——AZL =24 i (y - __qu> = K, (15.81)

Equation (15.81) yields the family of semicircles drawn below the y axis
of Fig. 15.19.

If the initial position and velocity of the mass are y;, v; as indicated
by P; in Fig. 15.19, the path of motion will be that of the heavy line.
The final position at which the mass comes to rest is indicated by P;.
Because of coulomb friction the at-rest position is not at the origin of
the phase portrait.
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Graphical Determination of Trajectories. For the general case of a
nonlinear system, it is not possible to obtain a mathematical expression
for the trajectories. When this is so, the trajectories may be constructed

by a graphical interpretation of Eq. (15.70), i.e.,
dv
i F(yp) =m (15.82)

where m = F(yp) = —fi(y,v) — f2(yw)(y/v) + C/v is the tangent to
the trajectory at the point (y,»). For a given slope m, Eq. (15.82)

m=-~2

m=—~8

m=4

m=0

| m=-2

Fir6. 15.20. Construction of phase portrait from isoclines.

describes a line such that every trajectory has the same slope m as
it crosses this line.  Such a line is called an isocline. In Fig. 15.20 is
shown a typical family of isoclines, which are constructed as follows:
Consider the equation

: j+29+5y=3 (15.83)
where fi(yy) = 2, fa(y,v) = 5, and C = 3. The equation for the iso-
clines is

m=—-2-5Y43
v v
_ =Y 3
or v~m+2+m+2 (15.84)

As was illustrated by this example, the isoclines are straight lines when
f1(y,v) and fy(y,v) are constant,







APPENDIX [

CORRELATION BETWEEN LAPLACE TRANSFORM,
FOURIER SERIES, AND FOURIER INTEGRAL

A greater understanding of the Laplace transform F(s) of a time func-
tion f(f) may be obtained by examining the similarities which exist
between Laplace transforms and the more familiar Fourier series and
Fourier integral.

Af(e)

Fi1aG. 1.1. Periodic function.

Fourier Series. A periodic function as shown in Fig. 1.1 may be
represented by the series

f@ = Ao+ i (A, cos nwet + B, sin nwt) (L.1)
n=]1

where wo = 2x/T, in which T is the period. The constants A, 4,, and
B, are evaluated as follows: Integration of each term in Eq. (I1.1) over
a complete period causes each term in the summation on the right-hand
side to vanish. Thus

T/2 T/2
/ f(t)dt=Ao/ dt +0 = A,T
-T/2 -T/2

1 T/2
~T/2

The value of A, is seen to be equal to the average value of the function
over a period.
To evaluate A, each term of Eq. (I.1) is multiplied by cos mwe and
335
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then integrated over a period. Because

+T/2 0 form = n
/ cos nwol cos mwelt dt = { T (1.3)
—T/2 5 form =n
+T/2
and / 7 sin nwel cos mwet dt = 0 (1.4)
it follows that
=2 [T 1 dt 15
"—7'/—7/2 J(®) cos nwe (1.5)

Similarly, multiplication of each term of Eq. (I.1) by sin mwe and
integration over the period yields the following result for B,

B 2 [+ i d ‘
n = -7—,/_2'/2 SF(t) sin nwt di (1.6)

Equation (I.1) may be telescoped into a more convenient form by using
Egs. (5.37) and (5.38) to express the cosine and sine in exponential form.

An CO8 Nwel = A?'-l (ej'""ﬂ‘ + e—jmot)
. .B. , . .
and B, sin nwgt = —j 5 (eFmwot — g—inus)

Thus  f(t) = 4, + % z (An — jBa)emst + (A, 4 jB,)e~mt  (1.7)
n=1

By also writing Eqs. (I.5) and (I1.6) in exponential form, it can be seen
that

Au—iB=2 [T 54 $— jsi it =2 [ jeme at
n — JB. T/;Tmf()(cos nwet — j 8in nwet) T _mf( €
(1.8)
and
. 2 (72 .
A, + jB, = T / e J(#)(cos nwet + 7 sin nwet) dt

2 (T2
-7 / F®)emw dt  (1.9)
-T/2

Substitution of the preceding results into Eq. (I.7) gives

1 - +7/2
= — Fnwot —Jjnwot
f@ = A0 + TZI e /—m f(te de

1 - +T/2 ¢
—_ —Jnwot fnogt
+ T El e’ /_m J(@®)ef=t dt  (1.10)
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By noting that the last summation is unaltered by changing the sign of n,
the Fourier series becomes

. J@®) = Ao+ z T ,/ o Sf{t)ednaot dt
A T J-1s2

S ginwot / o inwot
—_— —Jnao!
+ T | g SOt (L11)

n=—1

Because the value of the summation for n = 0 is A,,

. Jnwpl +7/2
7@ = z eT /_m J(t)e7net dt (1..12)

n=—w

Equation (I1.12) is frequently written in the form

7 = z C oot (L.13)
1 e
where C. = T F(t)e—inoet di
-T/2

Fourier Integral. As the period T becomes infinite, the Fourier series
expression given by Eq. (1.12) is

S inegt [TV
f(&) = lm [ z ¢ F(t)e—inoot dt] (1.14)
T—w i T ~T/2
By letting w = nw, and
Aw T Nwo — (n - l)wo . L
or 11'1—12 2r - 71’1.12 T

- Eq. (1.14) becomes

«©

1 = Jim [5-11 z et A /_J:j FB)e-iet dt] (L15)

"— n=—o

The limit of Eq. (I.15) is the Fourier integral
) = —;; / " g [ " e dt] dw (1.16)

The Fourier integral is frequently expressed by the Fouri(;,r transform
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pair
J@) = % / F(jw)e dw (1.17)

F(jw) = /_“ F(t)est dt (1.18)

Equation (I.18) is referred to as the direct Fourier transformation,
and Eq. (I.17) is the inverse Fourier transformation.

For most physical problems, all it is desired to know is the solution
for ¢ > 0. Thus, only the initial conditions and information concerning
S(@) for ¢ > 0 need be considered, in which case the lower limit of integra-
tion in Eq. (I.18) may be taken as zero.

To illustrate the use of the Fourier transform, consider the function

f@) = e+ t>0 (1.19)
Application of the direct Fourier transform gives

F(jo) = A " oteiot gt =

eate—jwt ©

e —al (1.20)

If the exponent a is less than zero, the preceding expression becomes

11
¢ —jo jo—a

F(ju) =0 — a<0 (I.21)
However, if the exponent a is positive, e becomes infinite when
evaluated at ¢t = « and thus F(jw) diverges.
Laplace Transform. To extend the usefulness of the Fourier transform
so that it is applicable to divergent functions, a converging factor et is
introduced. Thus, the general transform equation is '

Flo,jw) = ﬁ) " f(O)e—ote—it gt
- A T f@etorion gy (1.22)

The transform for the time function given by Eq. (1.19) is

e(a-v—ju)t ®©

F(ojw) =

a— 0 — ju
_ 1

(@ +jow) —a

The preceding expression is seen to converge when o is greater than a.

To ensure convergence of the Fourier transform, it was necessary that

Aw [f(®| dt < =. However, the transform indicated by Eq. (1.22).

converges when ﬁ’ ® [f(t)|e~*tdt < = for some finite o.

0

s>a (1.23)
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The substitution of 8 = ¢ + jw and F(s) = F(o,jw) into Eq. (1.22)
yields the Laplace transform equation.

F(s) = /o * f@)e+ dt (L.24)

It is necessary only that some finite value of o exists such that
ﬁ) N [f()|e*dt <  in order to verify the existence of the transform

indicated by Eq. (I.24). For most functions f(f) encountered in engineer-
ing work, the transform F(s) is convergent. It should also be noted that,
to solve differential equations by Laplace transforms, it is not necessary
to determine the value or values of ¢ over which F(s) is convergent. It
suffices to know that such a value or values of & exist.

‘V Tc’-&-joo
g —»Real
axis

fo-see

Fia. 1.2. Vertical line s = o + jo.

In effect, Eq. (I.24) is the result of substituting s for jw and F(s) for
F(jo) in Eq. (I.18). The use of these same substitutions in Eq. (1.17)
yields the inverse transform, i.e.,

0=k [T Pe)erd 1.25)
f()—z—,’r}- o (s)e ds I

The new limits of integration are obtained by noting that, when

w= tow,thens =¢ + jo =0 + jo. Equation (1.25) is a line integral

for which the path of integration is a vertical line which is displaced a

distance o from the imaginary axis, as is shown in Fig. 1.2. For con-

vergence, it is necessary that ¢ be such that all the values of s which make

F(s) infinite [i.e., poles of F(s)] lie to the right of the vertical line shown in
Fig. 1.2,




APPENDIX II

RESPONSE OF SYSTEM TO AN ARBITRARY INPUT

For some input functions z(¢), such as an arbitrary input, the transform
X (s) is not easily obtained or is a very complicated expression. For such
cases, it is desired to be able to determine the transient response without
knowing the value of X (s).

x(t)
X3
%2
%

t t ts t ts te t

Fia. I1.1. Arbitrary function z(f).

The arbitrary input z(¢) shown in Fig. IL.1 could be approximated by a
sum of pulses, i.e.,

z(t) = mlu(®) — ult — 0)] + zofu(t — t) — ult — 8)]
+ - zafult — tay) —ult — )] (IL1)

For this case, the response of the system y(f) at time ¢ is obtained by add-
ing the individual responses due to each pulse, as is shown graphically in
Fig. I1.2; i.e,,

y@® = 1) + y2(0) + - - - (IL2)
where y,(f) is the response due to the first pulse, ete. With the preced-
ing method, accuracy is increased by using more pulses of a smaller width
to approximate the input. In a similar manner, it is possible to approxi-
mate the input by a series of step changes.

A considerable saving in computational time and effort is realized by
the use of the convolution integral. In addition, the convolution-integral
method yields an exact rather than an approximate solution. It should
first be noted that the general transformed expression for Y (s) is

__ La(s)X(s) I(s) _ I(s) .
Y(s) - Ln(S) + Ln(S) - W(S)X(S) + Ln(S) (11-3)
where W(s) = Ln(s)/Ln(s).
340
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The inverse transformation of Eq. (IL.3) yields the desired time
response

vO = £ WEXE] + o [ 19| Ly

The last term of the preceding expression is evaluated directly from a
knowledge of the initial conditions. For an arbitrary input for which
LX)
Nl
Uy
0 t, t, ) t

A0

PATR | — -
yZ(ta) ————— %K
! ]
t

vt h

31ty

y(@©) A

Fia. I1.2. Response at time #,.

X (s) is not known, the first term may be determined by application of the
following convolution integral,

LYW ()X (s)] = A * w)z( — A) d\ (IL5)

where- w(A) = £ {[La(s)/L.(s)](1)} = £{W(s)] is the unit impulse
response of the system and may be computed directly since W (s) is known.
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w()) m

(a) Y »

z(=7) M\ .

(c)

>Y
¥

w (A} x(t~A)

—

¢ A

(e)
Fre. IL.3. Physical interpretation of convolution integral.
It is necessary to introduce the symbol A to distinguish the two time terms
which appear in Eq. (IL.5). A plot of the impulse response w(t) versus
t would be identical to a plot of w(\) versus A.

The convolution integral given by Eq. (II.5) is verified as follows: First
take the Laplace transform of the right-hand side of Eq. (I1.5).

e [ L * w\)z( — N) dk] = ﬂ) ° [ ﬁ) w2t — N) dx] et di
= A * w(\) [ ﬁ) ® 2t — Ne dt] dn  (IL6)

Application of the real-translation theorem to the integral in brackets in
Eq. (I1.6) gives
ﬁ) "t — Ne*dt = X(s)e— L7)

Substitution of this result into Eq. (I1.6) yields
e[ [T v~ an] = [ 7 woyes dx | X ()
= W(s)X(s) (I1.8)

Taking the inverse transform of both sides of the preceding expression
yields the result given by Eq. (I1.5). A direct physical interpretation of
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the convolution integral is shown in Fig. I1.3. The response of the 8ys-
tem w(\) to a unit impulse is shown in Fig. I1.3a. The arbitrary input
is drawn in Fig. I1.3b. The plot of z(\) versus X is identical to the graph
of the input function x(f) versus . The input is reflected about the

{a)

x
A
Rl I ! x(\)
)
1
j
(b) e iy —
t t A A
w{-A)
(e) ;}‘
4 w(t=\)
t p.%
x{(MN) w(t—-N\)

x(t)wlt—t) [ -

(e)

!
i
:
y ¢ A

F1c. II. 4. Physical interpretation of the alternative form of the convolution integral,

N = 0 axis to yield z(—}) in Fig. I1.3¢c. Translating Fig. IL.3¢ by ¢ sec
yields the z(¢ — A\) plot shown in Fig. I1.3d. Multiplication of corre-
sponding values of w(\) and (¢ — \) yields the curve of w(\)z(t — \) as
shown in Fig. I1.3e. The desired response y(f) at time ¢ is equal to the
area under this latter graph. From Fig. I1.3e, it is apparent that the
value of the integral given by Eq. (II.5) is zero for values of A greater
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than ¢. Thus, the upper limit of integration may be taken as ¢ rather
than infinity, i.e.,

S W ()X (s)] = [0‘ w\)z(t — A) d\ (I1.9)

The complete time-response expression is

@) = L ‘Wzt — A) d\ + £ [ 1{(2)] (I1.10)

By employing techniques similar to those used in deriving Eq. (IL.5), it
may also be shown that

LW HX @] = [ 20wt — ) ar (IL11)

where, as before, w(\) is the unit impulse response and z(\) the arbitrary
input. The graphical interpretation of the preceding expression is shown
in Fig. II.4. It is interesting to consider the portion of the total response
y(t) due to the portion of the input which occurs at time ¢;, as shown in
Fig. 11.4b. In effect the abscissa z(¢;) is multiplied by the value of
wl — ) to give z(t)w(t — ty). Thus, the multiplication factor for
each portion of the input depends on the value of w(A) at A =t — ¢,.
The impulse response w(A) is also called the weighting function because tt
tndicates how much the input applied t — &, sec in the past has decayed.



APPENDIX III

OBTAINING THE FREQUENCY RESPONSE
- FROM THE TRANSIENT RESPONSE

Several techniques are available! for determining the frequency
response of a system when the transient response is known. The method
now to be described was developed by Guillemin.?2 This method possesses
the advantage that the accuracy obtained with only a few terms (com-
putational efforts thus being minimized) is better than that obtained by
other techniques.

Guillemin’s procedure is based primarily upon a graphical interpreta-
tion of the following equation:

1 - )

Y(jw) = — ™ ()7t dt II1.1
(Jw) ( 7 w),. ‘/0 Yy ( )e ( )
The preceding expression is derived as follows: The transform for the nth

derivative of a function y(f) for which the initial conditions are zero i#
given by

£y ()] = [, " YO e dt = ¥ (s)

or Y(s) = sl [) " Y@ (e dt (111.2)

The substitution of jw for s in the preceding expression yields the result
given by Eq. (IIL.1). By comparison of Eq. (IIL1) and Eq. (L.18) it
follows that differentiation of y(f) with respect to time corresponds te
multiplication of Y (jw) by je.

The application of Eq. (IIL.1) for obtaining the frequency response is
next demonstrated. In Fig. III.la is shown a typical function y(f).

1 R. C. Seaman, Jr., B. P. Blasingame, and G. C. Clementson, The Pulse Method for
Determination of Aircraft Performance, Aeronaut. Sci., vol. 17, no. 1, pp. 22-38,
January, 1950. '

*E. A. Guillemin, Computational Techniques Which Simplify the Correlation
between Steady-state and Transient Responses of Filters and Other Networks, Proc.
Natl. Electronics Conf., 1953, vol. 9, 1954.

345
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The straight-line approximation to this function is indicated by y*(¢).
The first derivative y*(¥(¢) shown in Fig. ITI1.1b is seen to be a series of
steps. The height of each step is equal to the slope of the corresponding
portion of y*(f). The second derivative y*?(¢) yields the train of
impulses shown in Fig. III.1e. The area of each impulse is equal to the
vertical distance between steps of Fig. ITL.1b.

ey
L2y y(t;>}.\

10 // p—

/

0.8 /4\31,“)

0.6

04~ /4

0.2—//

/

0 1 1 1 1 ! ! 1 L 1 Loy

0o 1 2 3 4 5 &6 7 8 9 10 ¢
. {a)
y'“(t)A

0.4

02} +0.035
O I 1 ? ? !—Lv_l; 1 1

1 2 7__1 7 8 9 10
~0.2| ~0.09

Y

y.(zx( t)‘

+0.125

Y_0.035

~0.49
{c)

Fic. ITIL.1. Differentiation of y*(f) to obtain a train of impulses.

The second derivative y*®(f) may be written in the form
y*OWM) = Y ault — 4) (I11.3)
k=1

where ay is the area of the kth impulse, u1(t — #) is the symbolic designa-
tion for a unit impulse which occurs at time #, and » is the total number

of impulses.
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Substituting Eq. (II1.3) into Eq. (II.1) and noting that n = 2 gives

*( —_1_._ " y — Jut
Y (_760) = (jw)2 /(; ’;am;(t t;.)e‘“ dt

v

= _1_ —Jawty ‘
= Gt z ae (I11.4)

k=1
Application of Eq. (IIL.4) to the function shown in Fig. III.1 gives

Y*(jw) = G%)—’ (0.40 — 0.49¢ 7% + 0.125¢77% — 0.035¢—) (IIL.5)

For a given input z(¢) and corresponding output y(f), the frequency
response is G@*(jw) = Y*(jw)/X*(jw). For example, if the response y(¢)
is given by the function y(f) of Fig. III.1 and z(¢) is a unit step function,
z*(M(¢f) is a unit impulse occurring at ¢ = 0. Thus, X*(jw) = 1/jw, and

.0
YoGo) _ l (0.40 — 0.49¢7 4 0.125¢~7% — (.035¢—78%)

G0 = X%Ga) = G
(I11.6)

Improved accuracy is obtained by determining ¢V (f) exactly and then
approximating this derivative by straight lines rather than the original
function y(f). In effect, the function y(¢) is now being approximated by a
series of parabolas. For this case, the second derivative y*(¢) is a series
of steps, and the third derivative is a train of impulses. The approxima-
tion Y*(jw) now becomes

v

Y*(jo) = (j—i)s z Pp— (IIL7)

o=l



APPENDIX IV

OBTAINING THE TRANSIENT RESPONSE
FROM THE FREQUENCY RESPONSE

Essentially the same approach described in Appendix ITI may be used
to determine the transient response when the frequency response of a sys-
tem is known. The general operational representation for a differential
equation is

y(®) = G(p)z(2) (IV.1)

For the case in which the initial conditions are zero and the inpﬁt z(f) is a
unit impulse, the transform is

Y(s) = G(s) 1v.2)
The inverse transformation of Eq. (IV.2) is

y() = w(t) = 2—,{] ] _:” G(s)er ds (IV.3)

where w(t) is the symbol for the impulse response. The substitution of
Jw for 8 in Eq. (IV.3) gives

w(t) = 2% /_: G(jw)e™ duw (1V.4)

Integrating the right-hand side of the preceding expression by parts,
and letting v = G(jw)/2x and dv = et duw gives

G(jw)eit
2mjt

w(t) =

4 m /_1 GOyt do  (IV.5)

For any realizable function, G(jw) goes to zero for infinite values of w.
Thus, the first term on the right-hand side of the preceding expression
vanishes. Further integration by parts yields the following general
expression for w(t):
w(t) = %(_;m / GO (ja)er da (IV.6)
348
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By separating G (jw) into its real part Ge™ (jw) and its imaginary part
Gr™(jw) and similarly by writing e** in its rectangular form cos wt +
J sin wt, the preceding expression becomes

1
20 = (=7

+ m; / _: |Gr™ (jw) sin wt + G (jw) cos ] do (IV.7)

/ " (6™ (o) cos wt — Gr™(jw) sin wi] deo

Examination of the coefficient j/(— j)* in front of the second integral

y

+—Gpl( -jw)Al
7 ——\\\
,/ \\

Gljw)
+w

(a) e n(j“’)J

4

GB( ~jw) Ggljw)

f ) .

(b)
G,( -jw) A
/

|
|
|
1
) 0

———&

(c)

G]U‘_‘”

F16. IV.1. (a) Polar plot G(jw); (b) plot of Gr(jw) versus w; (c) plot of Gy (jw) versus w.
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shows that for even values of n(n = 2, 4, 6, .) the second integral is
imaginary. In order that w(t) be real the second integral must vanish
for even values of n. Similarly, for odd values of n the first integral is
imaginary and therefore must vanish.

The preceding result could also be ascertained as follows: In Fig.
IV.1a is shown a typical polar plot of G(jw). For any value of w,
Gr(jw) = Gr(— jw) so that the real part Gz(jw) is an even function of ,
as shown in Fig. IV.1b. However, from Fig. IV.1a it is to be noted that
G1(jw) = — G1(— jw), and thus the imaginary part G;(jw) is an odd func-
tion of w, as shown in Fig. IV.1c. Differentiation of an even function
yields an odd function, while differentiation of an odd function yields an
even function. Thus, the nth derivative of Gz(jw) is an even function
when n is even and an odd function when # is odd. Similarly, the nth
derivative of G1(jw) is an odd function when 7 is even and an even func-
tion when 7 isodd. In addition, the product of two even functions or the
product of two odd functions gives an even function, while the product of
an even function and an odd function is an odd funection. Thus, since
cos wt is an even function of w and sin wt is odd, it follows that for even
values of n the first integrand of Eq. (IV.7) is an even function, while the
second integrand is odd. The integral of an odd function from — « to
+ 0 is zero so that the second term of Eq. (IV.7) vanishes for even values
of n. Similarly, for odd values of n, the first integrand is an odd function
and thus vanishes after integration.

Because the first integral of Eq. (IV.7) is an even function when 7 is
even,

w(l) = 1 / ) [Gr™ (jw) cos vt ~ G1'™ (jw) sin wt] dw (n even)

w(— g™ Jo
Iv.8)

The first term in the integrand of Eq. (IV.8) is an even function of tme,
while the second is an odd function of time. In order that w() be zero
for negative values of time, the two components must be equal and
opposite for negative values of ¢ and hence equal for ¢ > 0. Thus for
even values of n and £ > 0

'w(t) = F:_.%' A* G (jw) sin wt dw (Iv.9)
w(t) = ;(—ijt)z /: Gr'™ (jw) cos wt dw (IV.10)

By applying similar reasoning to the second integral of Eq. (IV.7), it may
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be shown that for odd values of n and ¢t > 0

—_— 2j - (n)( 4,

w(t) = r(—jt)"ﬁ) G (jw) cos wt dw (Iv.11)
%

‘lD(t) = Wﬁ GR( )(]w) sin wi dw (IV.12)

When the nth derivative is a train of impulses, Eqs. (IV.10) and (IV.12)
become

— 1)n/2
w(t) = 2( ;,) — ax €OS wil 7 even (IV.13)
N k=1
— })(nt+D/2
w(t) = 3(‘%__‘ z o sin ot nodd (IV.14)
k=1

where a; is the area of the kth pulse and w; is the angular velocity at which
it occurs.

The procedure to use in applying Eq. (IV.13) or (IV.14) parallels that
described for Eq. (III.4) or (IIL.7). A set of equations similar to Eqgs.
(IV.13) and (IV.14) can be obtained from Egs. (IV.9) and (IV.11), in
which the imaginary part Gi(jw) is employed. Thus, one may work with
either the real or the imaginary part of G(jw) in order to find the impulse
response. After the impulse response has been determined, the convolu-
tion technique presented in Appendix II may be used to find the response
to any arbitrary input.






PROBLEMS

Chapter 2

2.1 Perform the indicated operations for each case given below. Use for f(¢) the
function f(f) = t. Determine the constants of integration if the initial conditions
are z(0) = 7 and pz(0) = 4.

(@) 2() = 3 [3f(0)] ®) =) = 3 (o)
(@ =() = = (/) @) z(t) = z%,[zﬁf(m
2.2. For each of the mechanical systems shown in Fig. P 2.2,
(a) Determine the equation which relates Jand z.

(b) Determine the equation which relates fand y.
(c) Determine the equation which relates z and Y.

f Jf

c Ix
K,
ClzJ
M| |, M,
] s
K : K K,
®) @ (8)
F1e. P 2.2. Translational mechanical systems. Fra. P 2.3. Translational me-

chanical systems with a mass.

2.3. For each of the mechanical systems shown in Fig. P 2.3, construct the equiva-
lent grounded-chair representation and

(a) Determine the equation which relates fand z.

(b) Determine the equation which relates fand y.

(c) Determine the equation which relates z and Y.

2.4. For the electrical networks shown in Fig. P 2.4a and b,

(a) Determine the equation which relates E,and I.

(b) Determine the equation which relates E, and Es.

353
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R, L,
T AN AL
mio | ] |
E, TN T2 g E, "I\ g, C, E,
| C27 |
(a) (b)
F1a. P 2.4. Electrical networks.

2.5. A schematic diagram of an accelerometer for measuring the linear acceleration
d*z/di? is shown in Fig. P 2.5. Determine the operational form for the differential
equation which relates y (the change in the position of the mass relative to the frame)
to the acceleration p%r of the frame.

b x
..
Y > y N
N M
K M
[
LN
c
N

Fia. P 2.5. Accelerometer.

2.6. For each of the mechanical systems shown in Fig. P 2.6, construct the grounded-
«hair representation and determine the equation relating f and z.

_ty

f _tx

% 7.
(a) (b)

F1a. P 2.6. Mechanical systems.
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2.7. Two mechanical vibration absorbers are shown in Fig. P 2.7. Construet the
grounded-chair representation and determine the equation relating f and z for each
case.

(a) (b)
F16. P 2.7. Mechanical vibration absorbers.

2.8. Construct the electrical analogy for the mechanical system shown in Fig.
P 2.2¢ by using

(a) Analogous force-voltage terms. Determine the equation relating E and I of
this electrical system and compare this equation with that relating f and z of Fig.
P 2.2¢.

(b) Analogous force-current terms. Determine the equation relating E and I of
this electrical system, and compare this equation with that relating z and f of Fig.
P 2.2¢.

2.9. Construct the mechanical analogy for the electrical system shown in Fig. P 2.4
by using

(a) Analogous force-voltage terms. Determine the equation relating f and z of this
mechanical system, and compare this equation with that relating E; and I of Fig.
P 2.4b.

(b) Analogous force-current terms. Determine the equation relating z and f of this
mechanical system, and compare this equation with that relating E, and I of Fig.
P 2.4b.

2.10. Determine the equation for the torsional spring rate of the stepped shaft
shown in Fig. P 2.10. Are the individual spring rates for the left and right portion of
the stepped shaft added by the parallel or by the series law?

L, L, l
T 4
D, ' ( 0_D.
4\ 7 F

Fia. P 2.10. Stepped shaft.

2.11. (a) The torque T' which is applied to the shaft shown in Fig. P 2.11qa is
transmitted directly to the load, which consists of inertia Jp*¢, viscous friction
C.pé, and external load torque Tz. Determine the equation relating T and the
position ¢ of the load. *

(b) Figure P 2.11b shows the force-torque analog for the system of Fig. P 2.11a.
Compare the equation relating f and z of this analog with that obtained for T and ¢ in
part a.
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(¢) In Fig. P 2.11c the two shafts are connected by gears of diameter D, and D,
respectively. Determine the equation relating T and the position ¢ of the load.
(Neglect inertia of the gears.)

®

(c)
Fia. P 2.11. Torsional system.

2.12. (a) In Fig. P 2.12q is shown the stable element of a stable platform for an
inertial-guidance system. This stable element consists primarily of two disks which
are connected by a flexible post. The torque transmitted through the postis K.(¢: —
¢1), where ¢; and ¢. designate the angular positions of the upper and lower disks,
respectively. Write the expression for the summation of torques acting on each disk,
and then eliminate the parameter ¢, in order to determine the operational form of the
differential equation relating the motor torque 7" and the position ¢;. Assume that
the viscous damping in the bearing which supports the post is negligibly small.

(b) In Fig. P 2.12b is shown the force-torque analog for the rotational system shown
in Fig. P 2.12g. For the mechanical system shown in Fig. P 2.12b, determine the

¢
o
Jl L[1 111
K
M, ?xz
A
7.
()

Fia. P 2.12. Stable element for an inertial-guidance system.
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equation relating f and ;. Compare this with the equation relating 7' and ¢, that was
obtained in part a. i

(c) Same as Prob. 2.12a except that the torque motor is connected to the upper table
rather than the lower table. Determine the equation relating T and ¢.

2.13. For the lever shown in Fig. P 2.13¢ and b, the variation in the applied force is
J, and the variation in spring position is z. (The horizontal line represents the refer-
ence position of the lever.) For each system,

(a) Determine the equation relating f and z.

(b) Determine the relationship between ¢ and (where t = fL; is the variation in
applied torque).

fl

(a)

I Lf

(d)
F1a. P 2.13. Torsional system composed of translational elements.

2.14. The lever system shown in Fig. P 2.14 is drawn in its reference position. The
variation in spring position is designated by z. The variation in applied force is
designated by f. (fand z are zero at the reference position.)

(a) Determine the equation relating f and z.
%
L
)

(b) Determine the relationship between ¢ and ¢.
f—b—t L ]

b= o

Fre. P 2,14, Lever system.




358 AUTOMATIC CONTROL ENGINEERING

2.16. For the lever system shown in Fig. P 2.15,
(a) Determine the equation relating f and z.
(b) Determine the relationship between ¢ and ¢.

i .
f

Fia. P 2.15. Lever system.

2.16. Linearize each of the following expressions:

(a) Y =sin KX
(b) Y = tan KX
() Y = ¢kX

What is the resulting linearized expression in each case when X; = 0? When
X; =12
2.17. Linearize the following expressions:

(@) Z = 0.1X* + E’Y—O (b) Z = XY +5)

If ¥; = 10 and X; = 20, what per cent error results in each of the above cases when
y=+land z = ~2?

2.18. The volume V of a sphereis ¥V = 44xR3. Determine the equation for the lin-
ear approximation to V. If R; = 10 in., what per cent error results by using this
approximation for ¥V when B = 11?7 What is the per cent error for R = 9?

2.19. The equation for the flow of an incompressible fluid through a sharp-edged

orifice is
2
Q=2CA \/;” (P — Py)
where @ = rate of flow, in.3/sec
C.: = coeflicient of discharge (unitless)
A = area of orifice, in.?

P, - P, = pressure drop across orifice, psi

p = density, Ib/in.3
Determine the linear approximation to the preceding equation for the case in which
both the area A and pressure drop P; — P: vary slightly from the initial values of
A; and (P, — P,)..

2.20. Typical operating curves for a d-¢c motor are shown in Fig. P 2.20. These are
curves of torque 7 versus operating speed N for constant values of voltage E applied to
the motor. These curves are a plot of the function N = F(T,E). Effect a linear
approximation for N. Evaluate the partial derivatives in this approximation when T
is 1 ip.-1b and E; is 16 volts.
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[79)

\ Lines of constant
2 2 16 | _applied voltage
.E. \
s 12 \\
0
0 1,000 2,000 3,000 4,000

Motor speed, rpm

Fia. P 2.20. Operating curves for a d-c motor.

Chapter 3

8.1. Determine the over-all relationship between z and y for the hydraulic servo-
motor which is shown in Fig. 3.1 for the case where a = b. Construct the block
di for this system.

7"In Fig. P 3.2 is shown a hydraulic servomotor which is similar to the power-
amplifying device used in power steering units. A movement in the z direction of the
valve is seen to open passage 1 to the supply pressure, which in turn causes the big
piston to move to the right. Because the sleeve is directly connected to this piston,
the sleeve also moves to the right to close off flow from the valve. Determine the
block diagram relating the input position z to the output y. Identify the time
constant.

Drain Supply Drain Area A

4

i

Load

(BN}

2z

7.
’ Passage 1”7
Passage 2~

Fie. P 3.2. Hydraulic servomotor.
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< 8.?:)1 In Fig. P 8.3 is shown a modification of the hydraulic power amplifier dis-
¢ in Prob. 3.2. Determine the block-diagram representation for this device in
which zistheinput and ytheoutpt_lt. Note that the position of thesleeveis [a/(a + b)ly.

Y

Piston —J= A

K

1
o]

poo

Drain High Drain
pressure

Fia. P 3.3. Hydraulic power amplifier.

8.4. For the hydraulic amplifier shown in Fig. P 3.4, determine the block diagram
for the walking-beam linkage and also the block diagrams relating e to y and y to w.
Combine these diagrams to determine the over-all block-diagram representation for
the system.

4

Fia. P 3.4. Hydraulic-amplifier.

8.5. In Fig. P 3.5 is shown a tension-regulating apparatus such as is used in the paper
industry. To ensure uniform winding, it is necessary to maintain a constant tension
F. as the sheet is being wound on the wind-up roll. To increase the tension in the
paper, the tension control lever is raised. This raises the torque control arm of the
motor, which increases the torque 7' applied by the motor to the wind-up roll. The
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change in torque provided by.the motor is tw = Kne/(1 + rp); 7 For the wind-up roll,
it follows that F. = T, /R, where R is the radiu; wheel. Determine the over-
all block diagram relating a variation f, of the reference or desired tension to a varia-

tion of the controlled tension f.. .

vt e
- / S—

R
Torque control T, K 122Y 3
arm F. |F.
4

2 o \+p

Inc.f z ) ] y

Fr . y ) w0 P
Dec& \—Tensioi'n ly §
control . Idler rolt Tension
lever K>S control -
- spring

Fi1c. P 3.5. Tension regulator.

8.8. In Fig. P 3.6 is shown an electrical speed control system. The input potenti-
ometer provides a reference input voltage E, which is proportional to the desired speed
Nin (E. = K,Nia). A voltage signal E. which is proportional to the controlled output
speed N, is provided by the tachometer (E, = K.N,). The error E, — E.is amplified
by an electronic amplifier whose output is By = K.(E, — E.). The voltage E; is

Ny
LRy
Input
potentiometer
%
Ry )
T J
: Ve
Am;hﬁer B, h L . /N,
a
E,=K.N, 0 l '
Field Vs Motor
/
/
Tachometer

kd

F1a. P 3.6. Electrical speed control system.
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applied to the field of a field-controlled d-c motor. The torque exerted on the shaft by
the motor (air-gap torque) is proportional to the field current, that is, 7 = KI,.
Determine the over-all block diagram for this speed control system for the case in
which the load torque consists of an inertia Jp20 = Jp(2x/60)N, and an external
torque 7'z.

8.7. In Fig. P 3.7 is shown a liquid-level controller. To raise the level of the fluid,
the control lever is moved up (i.e., position zis raised). This raises the valve (position

Supply F,

)

—f—

Fra. P 3.7. Level control system.

e), which increases y, thereby admitting more flow Qi,. The flow Qi, is a function of
the flow valve opening Y and the supply pressure P,. The change in volume of liquid
in the tank is the time integral (¢in — ¢.)/p, which is equal to the cross-section area of
the tank A7 times the change in level .. The flow out Q, is seen to depend upon the
pressure head H,. Determine the over-all block diagram for this controller.
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3.8. (a) The same as Prob. 3.7 except that positions e and y are connected by a link
to convert the hydraulic integrator to a hydraulic servomotor shown in Fig. P 3.8a.
That is, unit 2 in Fig. P 3.84 is substituted for unit 1 in Fig. P 3.7.

(b) The same as Prob. 3.7 except that positions e and y are connected by unit 3 as
shown in Fig. P 3.8b. This is in effect replacing the hydraulic integrator by a spring-
damper combination.

- Qp

Supply — Y
lz1 ~Capy -RY 'k-(?"‘)=b
"

K,

y I"%LY“*\\ -\L\p\ k.e

|

| I W e

| | 4 = -

| | Xy £

b - D=
<L _J_" D . ho l K’-\—k.‘

ho
(b)

F1a. P 3.8. Alternative control units.

3.9. A system for controlling flow is shown in Fig. P 3.9. Increasing the desired
flow setting increases the compression on spring K,, which causes z and position e of
the balanced valve to move up. This in turn causes the flow valve to move down,
which increases the flow. The amount of flow out is measured by a venturi-type
flowmeter so that the pressure drop P; — P, is a function of Q,. The diaphragm pre-
vents leakage from the high pressure P, to the low pressure Ps, but it permits motion,
just as a piston would. The effective area of the diaphragm is 4. The flow Q, is seen

_—j_\(,... Ayt ythy —he =0
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to be a function of the flow-valve opening ¥ and the supply pressure P,. Determine
the over-all block-diagram representation for this system.

Dec. . : K,
t g £
an - \eJ D)

\ Flow control lever
Inc.

Fia. P 3.9. Flow control system.

3.10. (a) Same as Prob. 3.9 except that e actuates the valve through unit 2, shown
in Fig. P 3.8a, rather than unit 1, shown in Fig. P 3.9.

(b) Same as Prob. 3.9 except that e actuates the valve through unit 3, shown in
Fig. P 3.8b, rather than unit 1, shown in Fig. P 3.9.

8.11. In Fig. 3.10 is shown a general block-diagram representation for a feedback
control system. The operators Gi(p), G:(p), and H(p) may be written in the form

N N, N
Gp) =) Gi») =p2  H) =357

where N represents the numerator and D the denominator of each term. Show that

NeNe:Dar(t) + Ne,DaDrd(t)
No,NG,NH + DO:DaxDH

Note that the coefficient for r(¢) is the product of the numerator terms Ng Ng, from
r(t) to the output and the denominator term Dy from the output back to r(¢). Sim-
ilarly the coefficient for d(¢) is the product of the numerator term Ng, from d(¢) to the
output and the denominator terms Dy Dg, from the output to d(t). From Fig. 3.17 it
is to be noted that Ng, = K,, Dg, = 1 + 7ip, r(t) = C:Knin, d(8) = —Csz, ete. By
application of the preceding general expression, verify the result given by Eq. (3.41).

3.12. For the control system shown in Fig. P 3.12, determine the differential equa~
tion of operation for each of the following cases:

c(t) =

K - K
(a) Gi(p) = I+mp ' (®) Gi(p) (1 + 1p) )
K, K,
(c) G«(p) '; + 1+ mp
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B .
/ . 4
v r + e 7 m + K, c
a 1) p(1+7,p)
Ky i

Fi1a. P 3.12. Block diagram for control system.

Chapter 4

4.1. For the control system shown in Fig. P 3.12, determine the steady-state equa-
tion relating v, u, and ¢ for each of the following cases:

_ K - K

(a) Gi(p) = m (b) Gu(p) __p(l +lnp)
KK

© 6ip) =ty

4.2, The steady-state operating curves for a proportional-type temperature contro}
system are shown in Fig. P 4.2.

(a) Determine the equation for steady-state operation about point 4.

(b) If this were an open-loop rather than a closed-loop system, what would be the
steady-state equation of operation?

J Lines of constant T;—=\250 7 o0 =\

120
Ty=120F - \J

@, Btu/hr

o
g
y

F1a. P 4.2. Steady-state curves for a temperature control system.

4.3. The individual constants in Eq. (4.3) may be evaluated from the steady-state
operating curves. From Fig. 4.1b, it follows that, for the system to be controlled,

(m + B‘u)Kq' = C
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(a) Show that
1 oM oM

Ka~-aclv ™M B=-37

Similarly from Fig. 4.1b it follows that for the controller

(Av - I(HC)I(Gl =m
(b) Show that

M K a
KnKe, = ) oM ):4

~%c|y AKe=

M V\
v ic A aC M

(¢) For the case in which A = 0.5, evaluate the individual constants K¢, Ke,
Kg, and B in the steady-state equation that was obtained in Prob. 4.2a.
4.4. For the illustrative example discussed in Sec. 4.3, determine the speed error

when Ni, = 4,000and Tz = 100. If the slope of the droop line 8M /8C lV = —KuKg,

is increased by a factor of 5, what is the new error?

4.6. When the system to be controlled has an integrating element such as to make
Kg, infinite, the steady-state operating curves for the system become horizontal
straight lines, as shown in Fig. P 4.5. The steady-state operating curves for a remote-
control positioning device are shown in Fig. P 4.5. The controlled shaft position is
designated by 6, and the set position by 6i.. Variations are to be indicated by A6.
For this remote-control positioning system, the external disturbance is a load torque
T, and the manipulated variable is a motor torque Tm.

(a) Determine the steady-state equation of operation relating Af,, A6, and £ for
operation about point A.

(b) To decrease the error caused by variations in the external disturbance by a
factor of 5, what should be the new slope of the droop line?

A Lines of constant 6,
Tl %0 K‘\0 \+90
\ \ \
600f — A 5 T,=+50
\ i\
) ‘\a \
woor \7\ '! N rTi=0
A \ i
P A L T,=-50
200~ P\ | \ L
A A A I
! 1 l !
0 -90 o'l +9 >
00

Fia. P 4.5. Steady-state curves for a remote-control positioning system.

4.6. In Fig. P 4.6 is shown the steady-state block diagram for a system which is
subjected to two external disturbances. Determine the steady-state equation relat-
ing ¢, v, us, and u,. For which of the following cases will the steady-state operation be
independent of variations in u,? for which cases is it independent of variations in
us? NoTE: Steady-state operation is independent of Ke,.

(a) Kg, = = Kg, and Ky are finite

(b) Kg, = Kg, and Ky are finite

.
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lul luz

B, B,

-

+ +
200 OS] ke, -t Ko, O] &g -

1 2 3

Ky |«

Fic. P 4.6. System subjected to two external disturbances.

4.7. Identify the mode of control for the control elements shown in units 1, 2, and 3
of Figs. P 3.7 and P 3.8z and b.
4.8. For each of the control elements shown in Fig. P 4.8¢ and b, determine the

Input I - e
, Te
! Feedback
I signal
S ::'::‘1;1
l E AL
¥y |II||. .!..-:H:E \ |
"N ‘1_7 fe
(a) i 1”‘
lnputl( =
Ye
, 4 Feedback
Q Q O signa
CI— 7. 7 l—e
ollo
olle K ‘
ollo
7

m

F1a. P 4.8. Control elements.
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operational form of the differential equation relating the actuating signal e and the
output m. * Identify the mode of control for each case.

4.9. A reproducing shaper is shown in Fig. P 4.9. The position y of the duplicating
cutter is seen to follow the position x of the master cutter. Determine the mode of
operation of the shaper. What modifications would be necessary to convert this to a
proportional plus integral type of controller?

y

Q 0 [Q
y';—' ‘\J —

Duplicating
cutter

F16. P 4.9. Reproducing shaper.

Chapter &
5.1. Determine the general solutlon for the first-order differential equation
- ry(t) = z(t)

5.2. Expand the following operators by use of partial-fraction expansion techniques:

(@) Lun(p) _ 6 ' Lu(p) _ 2p +3
Laip) (G +Dp+49 L.(p) p(p+3)

() Ln(®) _ p* +6p + 15 (@ L=») _ __18p + 30
La(p) (p + 1)p +3)p + 6) La(p)  p(p + 2)p + 5)

5.8. Determine the partial-fraction expansion for the following operators:

(a) Lu(p) _ _p+3 3} L2 3
L.p)  »lp + 17 «(p)  pp +3)?
Lun(p) _ 56p + 85

© ) = 7% + 2 T 5)

5.4. By use of classical techniques, determine the solution of the following dxﬂer~ i
ential equations for the case in which :c(t) = h, which is a constant: -

$

~
v

(a) y(t) = mx(t) ¥(0) = py(0) =0

(@0 = o212 A

mzu) y(0) = py(0) =0

(c) y(t) = ﬁ%z(t) %(0) = py(0) = py(0) =0 Lt ‘ ¢

e as Prob. 5.4 except that z(f) = ¢~ e
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5.6. The “ramp function’”’ shown in Fig. P 5.6 is seen to have a constant slope
equal to a. Determine the Laplace transform for this ramp function, whose equation
is x(t) = at.

f(@

¢
F16. P 5.6. Ramp function.

5.7. Determine the Laplace transform for
(a@) The function z(t) = at?

(b) The function z(t) = cos wi
Obtain the transform Y(s) for each of the differential equations given in
Prob. 5.4 in which x(f) = h and x(0) = h at time ¢t = 0. Perform a partial-fraction
expansion, and invert to yield the response y(¢). [It is to be noted that in classical
methods the input function z(f) must be continuous. Thus, to check the result of
Prob. 5.4, (0) must be taken as . With Laplace transforms a discontinuity can
exjst-qt ¢ = 0.]

Same as Prob. 5.8 except that z(¢) = ¢t and z(0) = 1 at time ¢ = 0.

5.10. Determine the differential equation of operation for the system shown in

Fig. P 5.10 for each of the following cases:

(@) Gilp) = 3 ® 6P = o

A step change of height A, occurs in the input z(f) at time ¢ = 0 such that for ¢ > 0,
z(t) = h..

By use of Laplace transforms, determine the response y(t) for the case in which the
system is initially at a steady-state operating condition and in addition z(0) =
y(0) = 0. *

e

x(t) + 08 y(t)

Gy(p) ~ 133

F16. P 5.10. Control system.

6.11. Same as Prob. 5.10 except that initially y(0) = 3.

Norte: The corresponding value of #(0) may be determined from the equation for
steady-state operation. ’

5.12. Same as Prob. 5.10 except that the step change occurs at time £, = 4.

5.138. By use of Laplace transforms, determine the response y(t) for the following
differential equations for the case in which all the initial conditions are zero [i.e., the
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system is initially at a steady-state operating point and in addition 2(0) = ¥(0) = 0].
The input z(t) is an impulse of area k which occurs at time ¢ = 0.

2% +3

b t) = —F———te———— (1
¥ = 2 o 79 *

= 22+l
@ ¥ = G2 + 5"

- p*+6p + 15
@V =TI + 31 677

@Same as Prob. 5.13 except that y(0) = 3.
Note: The corresponding value of 4(0) may be determined from steady-state opera-

tion conditions. .
; Prob. 5.13 except that the impulse excitation occurs at ¢, = 4.

b.16/ Same as
(6.18,)Determine the final value y( ) for each equation given in Prob. 5.13 by

‘C;i\ Application of the final-value theorem
(6D Substitution of £ = = into each of the resulting response equations of Prob. 5.13
7. Determine the initial value y(0+) for each equation given in Prob. 5.13 by

(@) Application of the initial-value theorem .
Substitution of ¢ = 0+ into each of the resulting response equations of Prob.

. 5.13
6.18. Determine the solution of Eq. (5.52) for the case in which the input is that

shown in Fig. 5.105 to d.

Chapter 6
8.1. Determine the time response () for each of the following transformed
equations: : ‘
2s + 12 82435+ 8
X ] . =
@ Y6 = e s 1 0 ®) Y6) = ooy + 85 ¥ )
2s +3 :

RO
6.2. Determine the time response y(¢) for each of the follbwing transformed

e 28 + 35 + 4

equations:
10
(a) Y(s) = (s F 25 ¥ 5) () Y(s) = (8 + 3)(s* + 23 + 10)
23+ 8 _ 20(s + 5) :
R R ICEY P

(©) Y) = ey 7 9

6.3. The characteristic function for a control system is known to be
L.(p) = (p + 5)(p* + 4p + 13)
Determine the generalr form of the equation for the response y(t) of this system when

the input excitation z(Z) is
(a) An impulse occurring at ¢ = 0
(b) An impulse occurring at ¢t = 5
(¢) A step function occurring at £ = 0

(d) A step function occurring at ¢ = 5
Is the general form of these response expressions affected by the initial conditions?

6.4. The zeros of the characteristic function L.(p) for a control system are plotted
in Fig. P 6.4. Determine the general form of the equation describing the response




PROBLEMS 371

#(?) of this system when the input excitation z(¢) is
(@) An impulse which occurs at £ = 0
(b) An impulse which occurs at ¢ = 5
(¢) A step function which occurs at ¢ = 0
(d) A step function which occurs at ¢ = 5

A7
¥———+16
|
I {4
|
} +2
Real
s — |
-10 -8 -6 -;4 -2 |0 axis
| 1-2
|
l -4
|
k———1—6

F1a. P 6.4. Plot of zeros of L,(p).

8.6. Determine the characteristic function for the control system shown in Fig. P 6.5.
Use block-diagram algebra to move the constants A and B into the main loop. Does
this affect the characteristic function?

VK -, l AL\”"%)

B
+
v : r+ 5(s+2) + 10 _
A 4 s(s+1) 8+3 o

L—El 02 |=

F1e. P 6.5. Control system.

6.8. For each of the characteristic functions given below:
(a) Determine the number of zeros that lie on or to the right of the imaginary axis.

8 + 2 + 53 4 2 8t + 28% + 65 + 25 + 5
£} Bs

(b) Determine the number of zeros that have a real part greater than or equal to —4.

6.7. Equation (6.65) is the functional relationship which must be satisfied to have
all the roots of a cubic equation lie to the left of the imaginary axis (i.e., have a real
part less than 0). Derive a similar relationship to determine whether or not all the
roots have a real part less than —2.

6.8. For the quartic expression given below, determine the functional relationships
which must be satisfied to have all the roots lie to the left of the imaginary axis.

bys® + b38® + bas? + bis + by
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Chapter 7

7.1. The root-locus plot for the system of Fig. 7.1a is given in Fig. 7.15. Deter-
mine the response equation c(t) for the case in which r(¢) is a unit step function and
K = 8. All the initial conditions are zero.

§ 7.2.. The root-locus plot for the system of Fig 7.2ais given in Fig. 7.2b. Determine
i the response ¢(t) for the case in which r(¢) is a unit impulse and K = 17. All the
K initial conditions are zero.

i 7.8. Sketch the root-locus plot for the system shown in Fig. P 7.3. Determine
the value K to yield a damping ratio of 0.5.

i R(s) + K C(s)
i  (3+1) (s+5) i

F1a. P 7.3. Control system.

@etch the root-locus plot for the system shown in Fig. P 7.4 for each of the
fqllowing cages:

| K K,
t (a) Gy(3) = e (b)) Gi(s) Py
[ For each case, determine the value of K1K:K; to yield a damping ratio of 0.5 for the
t dominant roots (i.e., the ones located nearest the imaginary axis).
1} D {s) 4
‘x R(s) + + X K C(s)
{ Gy(s) oy >
K; |

e

F16. P 7.4. Control system.

7.5. Sketch the root-locus plot for the system shown in Fig. P 7.5 for each of the
following cases:
(a) H(s) = 1 (b) H(s) =3 +1

For each case, determine the value of K to yield a damping ratio of 0.5 for the domi-
; nant roots. Comment on the effect of adding derivative action in the feedback path
i (i.e., case b).

i R(s) 4 K C(s)
7 5{s2+45+5)
His) = +

Fia. P 7.5. Control system.
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7.6. Sketch the root-locus plot for each of the two systems shown in Fig. P 7.6.
Determine the value of K at which each system becomes unstable. Comment on the
effect of adding an integrating element as is done in case b.

R(s) K(s+1) Ce  R(s) K(s+1) C(s)
TN T (s42) (87445 +5) o N 7] 5 (8+42) (874454 5) o
(a) ()

F1a. P 7.6. Control systems.

7.7. Sketch the root-locus plot for each of the following characteristic functions:

(a) s(s* +16s +25) + K =0 (b) s(s2 4 16s + 25) + K(s +2) =0
(c) &(s* + 168 +25) + K(s +2)(3 +4) = 0

7.8. Sketch the root-locus plot for each of the following characteristic functions:

(6) s(s +2) + K(s +4) = 0 g@m +NFECT D=0~

(¢) 2 +8 +204 (s +2)K =0 3T F8 F20) FK =0

7.9. The characteristic equation for Fig. 7.2 is given in Eq. (7.6). If a zero is
added to the system, the characteristic equation becomes

(s +4) s +6)+(s+2)K =0
S\k:—'}c%the root-locus plot for this new system.

£T110 Slggtiqhthe root-locus plot for each of the characteristic equations given below:

(@) s%s +8) + K = 0 (®) s%s +8) + (s + 2K = 0

Chapter 8

8.1. Derive the equation of operation for each circuit shown in Fig. 8.5.
8.2. Determine the computer diagram for the following first-order equation:

(0.5p + L)y = z(¢)

The initial condition is y(0) = 2 ft, and the maximum expected values are z(f), =
101b, ym = 5 ft, and ym = 20 ft/sec.
8.3. (a) Determine the computer diagram for the following third-order differential
equation.
(»* +2p* + 5p + 10)y = z(®)

The initial conditions are (0) = 5 ft, $(0) = 0, and §(0) = 10 ft/sect. The maxi-
mum expected values are z(f)w = 25 Ib, ym = 10 ft, jm = 20 ft/sec, #m = 50 ft/sec?,
and %, = 100 ft/sec?.

(b) Suppose that in part (a) it is found that ey, = ksjm = 25 volts rather than
100 volts. What is the actual value of y,? Revise the computer diagram so that
e, will be 100 volts, o
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8.4, Determine the differential equation that is being solved by the computer dia-
gram shown in Fig. P 8.4,

—10x(¢) V

.5 € ’ e
2 ey

N

AN

Fi1c. P 8.4. Computer diagram.

8.5. Let it be desired to speed up the computer solution for Prob. 8.2 by u tactor
of 5. Determine the computer diagram for this case.

8.8. Let it be desired to slow down the computer solution for Prob, 8.3 by a fa.ctor
of 2. Determine the computer diagram for this case.

8.7. Derive the equation of operation for each of the amplifier circuits shown in Flg
P 8.7.

R

2

e;o—A—if § o€,
(@) ‘

s
.
Ry /\
€] O~ AAN \/ o€y
(b)
C,
I 4
N
R ) _
eao—'\/\;v——‘ ‘/Ryz\'
B . R |
e, 0 b' - /\>_ O ey
.+ R, .
| e \ (c)

Fic. P 8.7. Amplifier circuits.
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8.8. Set up the computer diagram for simulating the system shown in Fig. P 8.8 for
the case in which r(t)s = 20, c(t)m = 10, K = 20,andr = 0.5. (Usea 1-uf capacitor.)

rit) + K c(t)
1+7p -

F1e. P 8.8. Control system.

8.9. Determine the computer diagram for simulating the control system shown
in Fig. P 8.9. The maximum expected values are r(t)m = 5, c()m = 10, d(t)m = 25,
and m(@)s = 20. The values of the constants are K = 10, K3 = 20, v, = 0.2, and
7e = 1.0. (Use 1-uf capacitors.)

d(t)
. A
r{t) 4+ K m + K, c(?)
T, p+l T,p+1 >

F1a. P 8.9. Control system,

8.10. Determine the block-diagram representation for the control system which is
_being simulated by the analog computer shown in Fig. P 8.10.
HiNT: First write the voltage expression.

Cy=2uf

IL

LY
R,=1 megohm

! 1
e,=2r(t) R ,.: }\‘/\ megohm

e.=—10¢(2)

(>
1 i
R =5 megohm

AN

Fi1e, P 8.10. Computer diagram.
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. ' Chapter 9 v
9.1. Each of the mechanical systems shown in Fig. P 9.1 is excited sinusoidally by

a f ce f = fo 8in wi. For each system, determine
The equation for the amplitude ratio yo/fo
¢ he equation for the phase shift ¢
lf= fo sin

lf-fo sin wt
M .

M

(a)
Fia. P 9.1. Mechanical systems.

9.2. Each of the mechanical systems shown in Fig. P 9.2 is excited sinusoidally
by a motion of the support £ = z, sin wf. For each system, determine

(a) The equation for the amplitude ratio yo/zo

(b) The equation for the phase shift ¢

by « _|_ c by
x=x, Sin wt Ix-xo sin cwt

(a) (b)
Fic. P 9.2. Mechanical systems.

9.3. For each of the functions given below, evaluate |G(jw)| and ¢ = X G(jw)
for w = 4(1/0.25) = 16, w = 2(1/0.25) = 8, » = 1/0.25 = 4, w = }4(1/0.25) = 2,
and o = (34)(1/0.25) = 1. [Note that values of w in the vicinity of the break fre-
quency (1/0.25) yield the most significant information.] Construct the exact log-
magnitude diagrams for each function, and sketch in the asymptotes.

(b) G(jw) =

9) G(jo) = 1 %0.25]'@

() Glw) = T o255
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e quadratic given below, evaluate |G(jw)| and ¢ = % G(jw) for 8
of w/wa =4, w/wpn =2, w/wn =1, w/wa = 34, and w/w, = ¥4 and fol@)
Repeat for the case in which = 0.1. Construet the exact log-magnitude am,
and sketch in the asymptotes.

G(jo) =

10
1 — (w/wa)? + 52¢(0/wn)

Construct the polar plot for each of the G(jw) functions given in Probs. 9,3
and 9.4.
9.6. The asymptotes of the log-magnitude, diagram for two G(jw) functions are
shown in Fig. P 9.6. For each case, the value of ¢ is —270° at very high frequencies.
Determine the equation for G(jw), and evaluate the gain K for each case.

Slope=—1 log unit/decade
2 —— P 2 Slope = —1 log unit/decade
. //

3 of Slope =2 3 of Slope =-2
> =
S T S
3_2_ . Slope =—3 w2 Slope = -3

-4 1 1 | I ) —Ar 1 1 ) I ! !

0.1 1 10 100 1,000 & 0.1 1 10 100} 1,000 w
200 200 -
(a) (b)

Frc. P 9.6. Log-magnitude diagrams.

or the system shown in Fig. P 9.7, the frequency-response curves for 6i(jw)
ANd G jw) were determined experimentally. For both Gi(jw) and Gs(jw) the phase

angle at very high frequencies is ¢; = ¢» = —90°. Construct the log-magnitude
plot for G(jw) = Gi(jw)Gjw). Determine the equation for G(jw), and evaluate the
gain K.

A

21 Slope=—1 log unit/decade
Al ; G,(jw) r{jw) +? G, Gw) —=] G, () c(Jg)

Slope=~1

Gy (jw)

-2 ’

|
0.01 0.1 1 10 100

Fia. P 9.7. Log-magnitude diagrams.
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. 9.8. Convert each of the systems shown in Fig. P 9.8 to equivalent unity-feedback

systems.
V{s) A R(s) + G, (s) C(i)
- \ - -
s+1o s I+s (a) | 54+10s [
c
V(s) 1 R(s) + G, (#) (i)
S ,165 5+10s |_
\-\'b ’+s (5) 1+s

Fia. P 9.8. Block diagrams.

@Fhe polar plots of G(jo) for two unity-feedback systems are shown in Fig.

9.9. For each system, determine whether the response would be better approxi-
mated by a first- or a second-order system and also the corresponding value of 7 or { to
be used. :

AV M=08

M=14

Unit circle

Real
1 2 3 axis

/
\—1
inc @
—2_\_/
Inc w

Fia. P 9.9. Polar plots.
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9.10, By use of polar plots, d em( the value of K to yield an M,, of 1.4 for each
of the following umty-feedback systems:
\
K ' K
(1 + 0.25) ®) G(8) =255 1 0.405 T 1)
K
(1 + 0.258)(0.25s2 + 0.40s 4+ 1)

9.11. Same as Prob. 9.10, but use log-modulus plots (i.e., Nichol’s plots) to deter
mine the value of K to yield an M, of 1.4.

(a) G(s) =
" (e) G(s) =

Chapter 10

@ For each of the G(syH(s) plots shown in Fig. P 10.1, the path of values for s-is
the same as that shown in Fig. 10.2. For each plot, determine the number of zeros
_ of G(s)H(s) which are located in the right half plane ( = @ in all cases).
For each stable system, determine the factor by which the gain should be changed
8o that the system will just become unstable.
For each unstable system, determine the factor by which the gain should be changed
so that the system will just become stable.

I
I
A : 1 N
/

Fra. P 10.1. G(s) H(s) plots.

. 10.2. For each of the following unity-feedback systems, sketch the complete G(s)
plot, and determine the number of zeros of the characteristic function that lie in the
right half plane:

Gls) = 10
(1 + 0.255)(0.25s* + 0.40s + 1)

10
Gls) = o1 + o 253)
10(1 + 3)
@G(s) %1 + 0.258) + o 258) (d) G(s) = T 0.289)
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10.8. Plot the log-magnitude diagram for the system given in Prob. 10.2(g). For
this system, determine

(a) The gain margin and the phase margin )

(b) The factor by which the gain should be changed to yield a gain margin
of 5

(¢) The factor by which the gain should be changed to yield a phase margin of 40°

10.4. (a) For the system G(s)H(s) = wn?/(s? + 2¢wns + wa?), the phase angle
¢ = X G(jw)H (jw) is

2¢(w/wn)

¢ = —ta.n'l—————-1 — @w/w)?

When |G(jw)H(jw)| = 1, then show that w/w, = v/Z — 47%. Substitute this value
of w/w, into the preceding expression for ¢, and then determine the phase margin
(v = 180° 4 ¢) as a function of ¢ for this type 0(n = 0) system. :

(b) Same as part (a) except for the type 1 (n = 1) system G(s)H(s) =

= w,?/5(s + 2{wn).

10.5. The substitution of s + o for s has the effect of shifting the imaginary axis a
distance ¢. Thus, to determine the number of zeros of the characteristic function
that have a real part greater than —4, substitute s — 4 for s in the function given in -
Prob. 10.2b, and determine the number of zeros of the characteristic function which
have a real part greater than —4.

10.6. When the angle ¢. + ¢ in Fig. 10.13 is —180°, the corresponding value of
log |{G.G| is —0.5, and thus |@.G] = 0.316. The corresponding gain margin is K,
= 1/0.316 = 3.16. If both r, and r; of the lag compensator of Fig. 10.13 are halved,-
then the equation for G.(jw) becomes (1 + jw)/(1 + 10jw). This has the effect of
moving the curves for G.(jw) to the right, which alters the resultant G.(jw)G(jo) plots.
Determine the gain margin when this new lag compensator is used. ’

10.7. Determine the phase margin for the system whose log-magnitude diagrams
are given by the G.(jw)G(jw) curves of Fig. 10.13. If the original compensator is
replaced by the new one described in Prob. 10.6 in which both r; and r; are halved,
what will be the new phase margin?

10.8. Determine the gain margin K, for the system whose log-magnitude diagrams
are given by the G.(jw)G(jw) curves of Fig. 10.18. If both r; and r: for the lead
compensator are doubled, then the equation for G.(jw) becomes (1 + 2jw)/(1 + 0.2jw).
This then shifts the curves for G.(jw) to theleft. Determine the gain margin when this
new lead compensator is used.

10.9. Determine the phase margin for the system whose log-magnitude diagrams are
given by the G.(jw)G(jw) curves of Fig. 10.18. If the original compensator is replaced
by the new one described in Proh. 10.8 in which both 7, and r; are doubled, what will
be the new phase margin?

10.10. Construct the approximate log-magnitude plots for each of the two systems
shown in Fig. P 10.10. For each system, write the equation for the open-loop transfer
function corresponding to the asymptotes. To obtain the exact transfer function
for each system, use block-diagram algebra to eliminate the minor feedback loops.
Compare the exact and approximate transfer functions.

K
8(s + 1/7)
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R(s) + + 10 C(s)
s(l+s) o

(a)

1 + 10 C(s)
1+0.01s | s(1+s)

1+0.1s

()
F1G. P 10.10. Block diagrams.
10.11. Same as Prob. 9.10, but use inverse polar plots to determine the value of the '

gain K to yield an M,, of 1.4.

10.12. Use inverse polar plots to determine the value of 8 such that the system of
Fig. P 10.12 will have an M, of 1.4.

R(s) + N\ + 2 C(s)_
: s2(1+s) o

Bs -t

F1a. P 10.12. Control system.

10.18. For the system shown in Fig. P 10.13, determine the value of &; to yield an
M., of 1.4.

&§2(1+s) o
28

F1a, P 10,13, Control system,



382 AUTOMATIC CONTROL ENGINEERING

Chapter 11

11.1. The ideal torque required to produce a pressure rise P, — Pi, across & pump
is equal to the product of the pressure rise and the ideal pump displacement D; per
radian of pump rotation. The torque efficiency of a pump is the ratio of the ideal
torque to the actual torque 7T required to drive the pump [3; = (P, — Pin)D:/T]
The volumetric efficiency », is the ratio of actual net rate of flow @ discharged per
second to the ideal discharge D;w, where w is the angular velocity of the pump. Show
that the over-all pump efficiency is equal to the product of the torque efficiency and
volumetric efficiency of the pump. ‘

11.2. A hydraulic damper, or dashpot, is shown in Fig. P 11.2. The force F causes
a pressure drop AP across the piston so that F = A AP, where A is the.net piston
area. The leakage flow Q between the piston and eylinder is given by the equation

Q _ = Dd*AP
T 12 Lp

where @ = rate of flow, in.3/sec

D = diameter of piston, in.

d = mean clearance = 14 difference between cylinder and piston diameters, in.

L = length of piston, in. :

AP = pressure drop across piston, psi

# = absolute viscosity, reyns (Ib-sec/in.?)
The velocity of the piston is dz/df = Q/A. Show that the equation of operation for
this damper may be written in the form F = C(dz/dt). What is the resultant expres-
sion for the coefficient of viscous damping C?

Diaphragm N\

oL

—_—

1

S L

Fia. P 11.2. Hydraulic damper. Fi16. P 11.3. Hydraulic damper

11.3. A modification of the viscous damper of Fig. P 11.2 is shown in Fig. P 11.3-
As in Prob. 11.2, the force F is resisted by the pressure drop AP, which acts on the
diapbragm. Because the diaphragm prevents leakage, the flow @ must travel through
the viscous restriction. The equation for the flow through a viscous restriction is
given by Eq. (11.8). The velocity of the diaphragm is dz/dt = @/A. Show that
the equation of operation for this damper may be written in the form F = C(dz/dt).
Determine the resulting expression for the coefficient of viscous damping C.

11.4. For the flow control system shown in Fig. 11.10a, the net flow Q going through
the throttle valve is equal to the flow Q, supplied by the pump minus the flow Q.
which is bypassed through the differential-pressure-regulating valve to drain (that is,
Q = Q1 — Q4). Because the pump supply @, is constant, for variations about some
reference operating condition it follows that ¢ = —g4. The flow through the throttle
valve is given by the equation @ = CyA; /P, — P,. Linearization gives ¢ =
Cia; + Co(p1 — ps2). Similarly, the amount of flow which is bypassed is given by the
expre.sion Q¢ = KuX +/P,, where X is the opening of the valve plung:r. Lineariza-
tion gives qa = Csz + Cipr. The force balance for the valve plunger is (P1 — P2)4 =
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Mp*X 4+ KX + F., so that linearization gives (p1 — p2)A = (Mp* 4+ K)z. Com-
bining the preceding linearized expressions yields the block diagram shown in Fig.
P 11.4aq.

Because P; rather than P; is the independent variable which acts as the external
disturbance, the block diagram of Fig. P 11.4a should be modified as shown in Fig.
P 11.4b.

By means of block-diagram algebra, eliminate the minor feedback loop of Fig,
P 11.4b and determine the resulting characteristic equation for this system.,

lm

Cy
(a,)

& c + 1 {(py—p,) A Iy q
—] 1 —E; P Mpzl-K 1 C3 -1 P
(a)

|
Cy
+ (qd)
@ e Lt IR AL 2N B N e g 4
- c, Mp?+K 3 A
C4

(b)
Fia. P 11.4. Block diagram for flow control system.

11.5. For Prob. 11.4, suppose that a viscous damper is inserted as shown in Fig.
11.10b. The equation for the flow through this damper is given by Eq. (11.9), and
the force balance for the plunger is given by Eq. (11.10). Determine the resulting
characteristic equation for this system.

11.6. For the flow control system of Fig. 11.11b, the flow Q = K,X VP, =P,
goes from the supply line through the unloading valve. This same flow passes
through the throttle valve so that @ = CzA, /P, — P,. Linearization of the
preceding expressions gives ¢ = Ciz — Cyp; and ¢ = Cia; + Cdp1 — p2). The
force balance for the plunger is (P1 — P:)A = Mp*X + KX + F.; thus for small
variations (p1 — p2)4 = (Mp? + K)r. Construct the block diagram for this gystem
in which g, is the input, ¢ the output, and p; the external disturbance. What is the
resulting characteristic equation?

11.7. Same as Prob. 11.6, except that a viscous damper is inserted between the
spring-loaded side of the plunger and the downstream side of the throttle valve,
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11.8. Determine the block-diagram representation for the hydraulic servomotor of
Prob. 3.1 in which the operation.of the four-way valve and cylinder is given by Eqg.
(11.18) rather than Eq. (2.56).

11.9. Determine the block-diagram representation for each of the hydraulic power
amplifiers shown in Fig. P 11.9¢ and b. The spring K in Fig. P 11.9b represents flexi-
bility in the linkage between the power output and the load. Determine the char-
acteristic equation for each system.

ol
puil

e

™

L, Supply J—L Supply

Loy (a) e x (b)

Fic. P 11.9. Hydraulic power amplifier.

11.10. A hydraulic servo system used to control the traverse feed of a machine tool
is shown in Fig. P 11.10. Each angular position of the cam corresponds to a desired -
reference position y, such that z = k... For steady-state operation, the valve must
be line on line, in which case z = 0. Because of the 5:1 lever ratio, it follows that
ye = 5z = 5(kryr). Thus, the value of kr gshould be 0.2 in order to have y. = ¥
during steady-state operation. The load on the piston is that due to the tool
reactive force on the cross-slide mechanism.

Operation of the valve and cylinder is described by Eq. (11.24). Complete the
block diagram for this system. What are the necessary conditions such that there will
be no steady-state error due to variations in the external load?

r’yc = =]
- To cross slide

g

"kr:f_ é&\\x&\\\\\\\\\

Fie, P 11,10, Machine too] control.
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11.11. In Fig. P 11.11 is shown a machine tool with a tape-controlled traverse
feed. (The longitudinal and rotational axes may also be tape-controlledif so desired.)
The tape reader converts the signal on the punched tape to an electrical voltage
e, = k.y. which is proportional to the desired traverse position y,.. A voltage signal
e. = kcy. which is proportional to the actual position is fed back and compared with
the reference signal. The error signal goes to the coils of a solenoid valve which give
a magnetic force (fu = kme) in proportion to the error. This force is resisted by a
spring such'that f» = Kz. The load on the piston is due to the tool reactive force
acting on the cross-slide mechanism. Thus, operatign of the valve and cylinder may
be described by Eq. (11.24). Complete the block diagram for this system. What are
the necessary conditions such that there will be no steady-state error due to variations
in the external load?

Punched ec=kcye From traverse
D axis potentiometer
TR
% To cross slide
K % :
Solenoid  / \ \‘
e ’/ Jo
Coils /%r E 00 R \\\\\\\\ Supply

\\\\\“\“
Fia. P 11.11. Tape-controlled machine tool.

11.12. The fluid power source for a hydraulic motor may be a variable-deliver
pump (i.e., hydraulic transmission) or a
servo valve as shown in Fig. P 11.12. The Om
net flow delivered to the motor is \

J
Qn = Ql - QC; - QL = Dmon (a) '
where Q¢, = %d—dt& = K.pP,istheequiva-
> . Fixed

lent compressibility flow in the P; pressure displacement
line and Qr = K1 (Py — P3) = (K1/Dn)Tn motor
is the leakage flow through the motor. ~ Q

The return flow @, is the net flow Q, —n
minus the equivalent compressibility flow
Qc, of the P, pressure line

& )

Qz = Qn —_ QC, = Dmem - chPZ (b)
The torque developed by the motor is
Tm = Du(Py — Py) (c)

Write the flow equations for @, and Q; as
a function of the respective pressure drops,
across the valve and X. Linearize Eqs. Fre. P 11.12. Hydraulic motor with
(@) to (¢), and then eliminate p, and pato  servo valve,
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obtain the functional relationship between Ay, im, and z. Construct the block dia-

gram for the case in which the load consists of an inertia Jp?6,, and external torque T'.
Chapter 12

12.1. Derive the equation relating p, and z for each of the pneumatic control ele-
ments shown in Fig. P 12.1a to d. Explain the significance of each partial derivative
which occurs in these equations. :

A
5
o 7.

B B

pooco

(a) ) (c) 53 (d) 5

Fia. P 12.1. Pneumatic control elements.

12.2. In Fig. P 12.2 is shown a flapper amplifier in which the controlled pressure is
P,. Determine the over-all block diagram which results when this pressure P,
is connected to each of the pneumatic control elements shown in Fig. P 12.1qg to d.
The position z is fed back to the walking-beam linkage as indicated. Note that for
this over-all block diagram the input is the error e and the output is the controlled
pressure p,. (The time constant for the flapper-type amplifier may be considered
negligible.) Identify the mode of control for each case.

\/

n X »

2 ~=—— O

F1a. P 12.2. Pneumatic flapper amplifier.

12.8. The block diagram of a pneumatic position control system is shown in Fig.
P 12.3. The controlled position is 8., and the reference position is 8. Construct the
resulting root-locus plot for each of the following:

(a) Proportional controller p, = K.e

(b) Proportional plus derivative controller p, = K1 + 8)e

(c) Proportional plus integral controller p, = K1 + 1/s)e

(d) Proportional plus derivative plus integral controller p, = K (1 + 8 + 1/8)e



PROBLEMS 387

12

Pneumatic Py 10
controller_ "1 s2+4s5+5

Fi1c. P 12.3. Position control system.

12.4. Same as Prob. 12.3b, but use

(@) po = K(10 + s)e () po = K(0.1 + s)e

12.6. Same as Prob. 12.3¢, but use

(a} po = K1 + 10/3)e () po = K1 + 0.1/3)e

12.6. For the pneumatic flapper amplifier shown in Fig. 11.22a plot a curve of P,
versus X. The diameter of the fixed orifice is 0.05 in., the diameter of the flapper
opening is 0.20 in., and the supply pressure is 100 psia. Determine K, at P; = 30,
50, and 70 psia.

Chapter 18

13.1. A field-controlled d-¢ motor is shown in Fig. P 13.1. The motor drives the
load through a gearbox so that w, = nw, where n is the gear ratio, » is the motor
speed, and w,. is the speed of the load (i.e., the controlled speed). The output shaft
is connected to a tachometer, which produces a voltage proportional to the controlled
speed (E, = K.w.). An electronic amplifier is used to amplify the error signal by a
factor K,, that is, E; = K,(E, — E;). Complete the over-all block-diagram repre-
sentation for this system. What is the characteristic equation for this system?
‘Sketch the root-locus plot for the case in which the time constant r, is 0.1 sec and the
‘viscous friction C, is negligible.

R
WY ' ‘ Coﬁstant
Amplifier f : .I,\\ current
) gain E;
. Ka | Lf w
Potentiometer E =K w,
We=nw -
Ec-Kc We p > Vi

Tachometer

Fie. P 13.1. Field-controlled d-c motor.
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18.2. (a) In Fig. P 13.2 is shown a generator which is used as a voltage amplifier.
The prime mover drives the generator at a constant speed. Determine the equation of
operation for the amplification ratio E:/E,.

(b) Derive Eq. (13.25).

Generator

AN ° o

* _[_ 1
I CT ITZ
@Constant
w
Prime mover

Fia. P 13.2. Voltage amplifier. ‘

18.3. Obtain the over-all block-diagram representation for the positioning servo-
mechanism shown in Fig. 13.11. What is the characteristic equation for this system?
Sketch the resulting root-locus plot for the case in which r,, = 0.5, v, = 0.1, and
C, is negligible.

18.4. A Wheatstone bridge as shown in Fig. P 13.4
is commonly used as a comparator for electrical
systems. The resistance R, of the input potentiom-  Source

eter varies in proportion to the reference input. voIIE:age

Similarly the resistance B, is varied in proportion to s

the controlled variable. The supply voltage E, and

resistances R; and R, are maintained constant. -

Determine the equation for the voltage E, which is

a measure of the error. Fic. P 134. Wheatstone bridge.

13.6. The gain K of a high-gain amplifier is affected by variations in the tube char-
acteristics due to temperature changes, variations in the supply voltages, ete. Also,
slight irregularities in the input signal become greatly magnified at the output (i.e.,
noise). The use of feedback around an amplifier as illustrated in Fig. P 13.5 tends
to make the amplifier insensitive to these changing influences. For this feedback
amplifier, the total resistance of the potentiometer across the output is R, and the
resistance between the wiper arm and point B is BR. Thus, the potential between
point A and Bis BE,, which is fed back. The input to the amplifier is Ein = E, + BE.,
and the output is E; = KE;,. Determine the equation of operation for this feedback
amplifier.

Amplifier R/\ A
l'l g;(in Ez
B8R
—-— ﬁE2—> B

Fia. P 13.5. Feedback amplifier.
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18.6. When the amplifier shown in Fig. P 13.5 is operated with the recommended
supply voltage, the voltage amplification (without feedback) is 30 per stage. For
three stages of amplification, K = —27,000 at full supply voltage. The negative sign
occurs because of the odd number of stages of amplification. When the supply
voltage drops 20 per cent, the amplification without feedback is reduced to K =
-20,000.

Determine the voltage amplification E3/E; under the two preceding conditions for
this amplifier with feedback in which 8 = 0.001. What is the resulting per cent
change in over-all amplification?

18.7. Determine the over-all voltage amplification E,/E; for the feedback amplifier
shown in Fig. P 13.7.

O———AANA + o
" A f
E, ng K R E,
6R
Lo —
T T

Fie. P 13.7. Feedback amplifier.

13.8. Typical values for a transistor are base resistance r, = 1,000 ohms, emitter
resistance r. = 25 ohms, collector resistance r, = 2 megohms, and o = 0.975.

(a) Determine the corresponding values for ki, hse, hre, and ho.

(b) Determine each value of G: and G, in Table 13.1 for the case in which Ry
= 20,000 ohms.

13.9. Show that for a grounded-base transistor circuit

_ ha
h‘b—l-l-hj.
ho'choa
hfb—1+hh_hn
hye
hfb=—a=—1+!h,.
hoe
hab—1+hls

(To obtain these relationships, it is necessary to utilize the approximations that
hre <1 and hiho K hy,.)

18.10. Use Eqgs. (13.81) to (13.84) to express the values of G, and @ in Table 13.1
as a function of the equivalent eircuit resistances and a.

18.11. Verify the equations for G, and G: given in Table 13.1.

18.12. In working with the four-terminal network of Fig. 13.24d it is convenient to
use the term Z; = v,/i, and the term Z, = v2/i,. Determine equations for Z; and Z,
in terms of the grounded-emitter h parameters for a:

@ Grounded-emitter connection

b Grounded-collector connection

¢ Grounded-base connection
(Note that v, = Rg‘i].)
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Chapter 14

14.1. In Fig. P 2.5 is shown a linear accelerometer in which y is the motion of the
inass relative to the frame and z is the motion of the frame. In the differential
equation relating z and y, replace the acceleration term d*z/df? by a. (where a. is the
acceleration of the frame). Obtain the resulting transfer function for Y(s)/A(s).
Note that because the input is an acceleration the output displacement y will be
proportional to the acceleration. Explain why it is desirable to have w. very high
and ¢ between 0.4 and 0.7.

HinT: Sketch the log-magnitude diagram.

14.2. A single-degree-of-freedom gyroscope is shown in Fig. P 14.2. A rotation of
the frame about the z axis causes the gyrowheel to precess about the y axis. This

N

Fi1G. P 14.2. Single-degree-of-freedom gyroscope.

precession is resisted by a spring and damper which provide an opposing torque such
that T, = —(K + Cp)6,. With the aid of Eq. (14.6), determine the equation relat-
ing the input motion 6, to the output 6, (neglect inertia J, and damping C,).

When the opposing torque is provided by the spring only (i.e., no damper), a rate
gyro results. What is the equation of operation for this rate gyro? When the
resisting torque is provided by the damper only (i.e., the spring K is removed), the
device becomes an integrating rate gyro. Determine the resulting equation of
operation.

14.8. In Fig. P 14.3 is shown the application of a one-degree-of-freedom gyroscope
to provide a stable reference plane. Because of the bearings, motion of the ship is
not transmitted to the platform. However, extraneous torques T,, may be trans-
mitted to the platform because of friction in the bearings, inertia forces, etc. Such
external disturbing torques tend to rotate the platform about the z axis away from its




PROBLEMS 391

reference orientation. A rotation of the platform from its reference position causes
the gyroscope to precess about the y axis. An electrical pick-off then detects the
error. :

For an integrating rate gyroscope which is sensitive to torque about its z axis, it
follows that 8, =~ (J.,/C)8,. The electrical pick-off sends a signal to the motor to
provide a corrective torque such that T, = Kn(6- — 8,), where 6, is the desired
reference position. From Eq. (14.7) it follows that

Tl = Tm — Lz = J.P’az + Cxpat + J.m.po,

where T, is the external disturbing torques tending to rotate the platform from its
reference position.

Determine the over-all block-diagram representation for this system in which ¢, is
the reference input and 8, the output.

z-axis Frame

torque motor

Fi1a. P 14.3. Stable reference plane.

14.4. Sketch the root-locus plot for the characteristic equation of the system of
Prob. 14.3. Assume that the viscous friction C.pb;, is negligibly small.

Add series lead compensation of the form (1 + 718)/(1 + 728), where 7, > 14,
to this system. Sketch the resulting root-locus plot. Does lead compensation
improve the general stability? Could stability be improved by the use of lag series
compensation?

14.6. By the addition of another gimbal and an z-axis torque motor, it is possible
to make the platform of Fig. P 14.3 insensitive to rotations about the x axis as well as
being insensitive to rotations about the z axis. The gyroscope of Fig. P 14.3 detects
rotation about the z axis only. To detect rotations about the z axis, it is necessary
to mount another gyroscope on the platform. Make a sketch of the resulting system.
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Determine the block-diagram representation in which 6. is the output and 6, is the
reference input.

14.6. In Fig. P 14.6 is shown the block-diagram representation of an autopilot
system for controlling the pitch angle 6. of an airplane. Determine the required value
of the gain K such that the resulting system will have an M. of 1.4.

Autopilot
K B¢
s%(1+0.25s) o
s |-
Rate gyro

Fic. P 14.6. Autopilot system.

Chapter 16

16.1. The characteristics of a saturation type of nonlinear element are shown in
Fig. P 15.1. This element is linear for —8/2 < x < 8§/2 (in this region y = kx).
The maximum attainable value for y is kS/2. Determine the equation for the
deseribing function N.

Ay V
S Slope=£ S
2 A 2 ™
! [

-SI/Z ! oz Pl , ot
' 5/2 8 |1r 2 o
Y _kS =8

2
-1
] S—
L \x-xo sin wt
T
-2x
{wt

F1c. P 15.1. Saturation-type nonlinear element.

15.2. In applying the root-locus method to the system in Fig. P 15.2, it follows -
that the angle condition is

%8+ %(s +4) + %(s +6) — XN = —180° + k360°
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When the angle of N is zero, as is the case when the nonlinear element does not intro-
duce a phase shift, the root-locus plot is the same as that for the basic system. From
the magnitude condition, it follows that

sl s + 4l |s + 6! = |K]| |N|

Thus, the value of the gain along the root-locus plot is KN. The basic root-locus
plot for this system is given in Fig. 7.2. For K = 60, determine the value of N at
which the system becomes unstable.

For the nonlinear element represented by Fig. 15.5, determine the value of z,/D
at which the system becomes unstable for the case in which k = 5.

R(s) + K C(s)
s(s+4) (s+6) o

Fra. P 15.2. Control system.

15.8. Same as Prob. 15.2, except that the nonlinear element is represented by
Fig. 15.1. Determine the value of ¥, at which the system becomes unstable.

16.4. Determine the expression for C(z)/R(z) for each of the systems shown in
in Fig. P 15.4 in which the sampler is located at different points in the system.

r
r R —c a Gl r——O/O—'b Gy é

Y L] !

Hq—{ ‘ H |=

(a) (b)
F16. P 15.4. Sampled-data systems.

16.6. Determine the closed-loop z transfer function for the system shown in Fig.
— T
15.13b for the case in which G(s) = -ls—e.—lﬁ and H(s) = 1. Identify the
characteristic function of the closed-loop z transfer function, and sketch the root-
locus plot. When will the system become unstable?
16.6. Determine the general equation for the phase trajectory for each of the
following:

(a) 2+ Ct =0 () £+ Kz2=0
(¢c) 4+ Ksinz =0

Sketch the trajectories for each of the preceding cases.
15.7. Determine the equation of the isoclines for each of the following:

@) £+C:t+Kz=0 ) £+ Ci +Kz* =0
(¢) £+ Clzlzt + Kz =0

Sketch the trajectories for each of the preceding cages.
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Accelerometer, linear, 300-303, 354
Accumulator, 213-214
Actuating signal, 24
Actuator, hydraulie, 32-35, 219-228
pneumatic, 253—254
Adder (summer), 21-22, 132—-133
Abrendt, N. R., 260
Air relay, 244—246
a contours, on direct polar plot, 171-172
on inverse polar plot, 199-200
on log-modulus plot, 177-178
Amplidyne, 267
Amplifiers, operational, 131
(See also Transistor amplifiers; Vac-
. uum-tube amplifiers)
Analog computers, 129-148
computer diagrams, 133-136
initial conditions, 135-136
integration, 132
multiplication by a constant, 131-132
operational amplifier, 131
potentiometer, 143, 147
REAC, 143
scale factors, 136-139
simulation, 143-148
of nonlinearities, 148
summary, 138-139
summation, 132-133
time scale, 139-143
Analogies, 17-21
force-current, 18-20
force-voltage, 17-20
torque-force, 20
Angle of departure, 123-124
Angle condition, 115-116
Aseltine, J. A., 70
Asymptotes, intersection point, 116117,
123-124
of log-magnitude plots, 156-161 .
of root-locus plots, 116-117, 122-124

Attenuation, 191
Axial-flow compressor, 240-241

Barnes, J. L., 70
Best, Stanley, 258
Blackburn, J. F., 228, 230-231, 236,
239
Blasingame, B. P., 345
Bleed, to atmosphere, 244, 245
restriction, 251-252
Block diagrams, 3-5
algebra of, 4042
of general system, 4849
Bode, H. W., 157
Bode diagrams, 157
Break frequency, 157, 162, 188, 192-197
Break-in point, 125-127
Breakaway point, 117-118, 126-127
Brown, G. 8., 150
Bruns, R. A., 160

Caldwell, W, 1., 253
Campbell, D. P., 150
Cannon, R. H., 303
Capacitance, electrical, 11-13
Carslaw, H. 8, 10
Carter, G. W, 10
Cascaded networks, 195
Centrifugal compressor, 240
Chandler, D. P., 303
Characteristic equation, 65
(See also Characteristic function)
Characteristic function, 65, 89-110
of closed-loop control system, 104-105,
109-110 f
determination of stability from, 96-105
effect of external disturbance on, 103-
105

395
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Characteristic function, predicting tran
sient response from, 101-103
relation to system stability, 96-97,
101-102, 109-110
of sampled-data systems, 327-328
zeros of (see Zeros of characteristic
function)
Check valves, 213
Chestnut, H., 150
Churchill, R. V., 70
Clementson, G. C., 345
Closed-loop control system, 24
characteristic function, 104-105, 109-
110
standard terminology, 4849
Closed-loop frequency response, 169-174,
184-185
(See also Frequency response)
Command signal, 4849, 55
Comparator, 2—4
for linear motions, 22
for rotational motions, 21-22
Compensated isochronous control, 62
Compensation, feedback, 197-206
series (see Series compensation)
Compressors, axial-flow, 240-241
centrifugal, 240
positive-displacement, 240-242
Computers (see Analog computers; Digi-
tal computers)
Conformal mapping, 179-184
Control elements, 2—4
Control valves, 219
Controlled variables, 24, 55
Convolution integral, 340-344
Correlation of transient and frequency
response, 171-174, 345-351
Cosgriff, R. L., 329
Coulomb friction, 331-332
Cracking pressure, 212, 216, 218
Cunningham, W. J., 329
Cylinders, hydraulic, 219-220, 225-227,
236 ‘ -
double-acting, 226-227
single-acting, 219-220, 225-227
pneumatic, 254

Damped natural frequency, 96
Damper, hydraulic, 217-219
rotational, 11
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Damper, translational, 7
Damping ratio, 97-99
Dashpot (see Damper)
D’azzo, J. J., 111, 312, 329
D-¢ motors (see Motors)
Dead zone, 223-225, 312, 315-316
Decade, 155-156
Decauline, P., 322
Decibel, 155-156
Decrement, logarithmic, 99
Degrees of freedom, 20-21
Derivative controller, 62
proportional plus, pneumatic, 246-249,
253
(See also Proportional plus integral plus
derivative controller)
Describing function, 311-321
dead zone, 312, 315-316
on-off element (see On-off systems)
with phase shift, 318-321
use in stability analysis, 316-318
Differential equations, 64-97, 130-143
solution of, analog computer, 130-143
clagsical, 64-70
Laplace transform, 70-97
Differential gear train, 2122
Differential pressure-regulating valves,
215-217
Digital computers, 129-130, 148-149
Direct polar plots, 166-169, 179-185
Disturbance, external, 2-4, 39, 49, 103~
105
Draper, C. 8., 298
Drift in gyroscopes, 291, 298
Droop-type controller, 55

Eckman, D. P., 62, 250
Electrical circuits and components, 11-13
Electrical control systems, 207-208, 260—
289
amplifiers (see Transistor amplifiers;
Vacuum-tube amplifiers)
generators, 260-261
motors (see Motors, electric)
synchros, 270-272
Equalization, 188
(See also Compensation)
Equilibrium, 50
Error signal, 24
Euler’s equations, 74
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Evans, W. R, 111
Experimental determination, of fre-

- quency response, 160-163

of gain constant, 163-165

of time constant, 161-162

of transfer function, 161-162
Exponential response, 35-36, 80
Exponentially decaying function, 7374
External disturbance, 24, 39, 49, 103-

105

Feedbaek control system, 2-5
general block diagram, 41, 48
Feedback elements, 4
Feedforward elements, 4-5
Final-value theorem, 84 ‘
First-order system, frequency response
of, 152-154, 156-157
transient response of, 35-36, 79-82
Flapper valves, hydraulic, 233-236
pneumatic, 242-250
Floating-type controller, 59
Flow through valve orifices, hydraulic,
220-236
pneumatic, 255-259
Force-current analogy, 18-20
Force-voltage analogy, 17-20
Forcing function, 65
Fourier integral, 335, 337-338
Fourier series, 313-316, 335-337
Franklin, G. F., 322
Frequency of oscillation, 96-99
natural, damped, 96
undamped, 97-99
Frequency response, 150-206
closed-loop, 169-174, 184-185
correlation with transient response,
171-174, 345-351
determining gain constant from, 163—
165
experimental determination of, 160~
163
improving performance by, 179-206
obtaining desired M, from, 174-178,
185-187, 199-206
open-loop, 154, 169-174, 184-185
representation by means of, inverse
polar plots, 199-206
log-magnitude diagrams, 154-163,
185-187 '
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Frequency response, representation by
means of, log-modulus plots, 177-
178
polar plots, 166-169
of sampled-data systems, 328-329
of second-order system, 159-161, 171-
173
from transient response, 345-347
Friction, coulomb, 331-332

Gain adjustment, from direct polar plots,
174-177, 184-186
from inverse polar plots, 199-206
from log-magnitude diagrams, 185-187
from log-modulus diagrams, 177178,
186-187
from series compensation, 190-197
Gain constant, 160-165
experimental determination of, 160-163
Gain margin, 185-187, 192
Gardner, M. F.,, 70
Generators, 266—268
amplidyne, 267
Rototrol, 266-267
tachometer, d-c, 266-268
Gibson, J. E., 228, 236, 250, 260, 281
Gille, J. C., 322
Gimbals, 290-291, 300-303
Governor, flyball, 43-45
Groke, L. R., 298
“Grounded-chair”’ representation, 15
Guillemin, E. A., 108, 345
Gyroscopes, 290-303
drift in, 291, 298
dynamics of, 295297
types of, directional, 291-295
displacement, 292
free, 290-291
HIG, 298-300
integrating, 300
one-degree-of-freedom, 297-298
rate, 297-298, 300
integrating, 298-300
restrained, 297-300
two-degrees-of-freedom, 297
vertical, 291-295

h parameters, 284289
Harris, H., 150
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Heaviside operational notation, 8-10
Heaviside partial-fraction expansion (see
Partial-fraction expansion)
Higgins, T. J., 109
Hogan, H. A., 109
Houpis, C. H., 111, 312, 329
Hunter, L. P., 281
Hurwitz criterion, 108-109
Hydraulic actuator, hydraulic amplifier
(see Hydraulic integrator; Hydraulic
servomotor)
Hydraulic control systems, 207-239
accumulators, 213214
cylinders (see Cylinders)
flow equations, 217; 220-236
JIC standard symbols, 215
power supply (see Power supplies)
pumps (see Pumps)
receiving units, 236-238
viscous damper, 217
Hydraulic integrator, 23-24, 219229
Hydraulic servomotor, 32-35, 219-229
Hydraulic transmissions, 236-238
Hysteresis, 318-320

Impulse function, 73 | :
Impulse response, by convolution in-
tegral, 341-344
in sampled-data systems, 322-323
gystem stability from, 105-106
Indirectly controlled variable, 4849
Inductance, electrical, 11-13
Inertia, 7
Inertial navigation, 130, 290-310
control loop, 303-308
gyroscopes (see Gyroscopes)
missile dynamics, 308-310
stable element, 301-308
stable platform, 300-308
Initial conditions, 9-10, 69-70, 80-85, 89—
90, 135-136
Initial-value theorem, 84-85
Integral, convolution, 340-344
Integral-type controller, 52, 57-59
plus proportional-type controller, 59—
62
Integrators, analog computer, 132
hydraulic, 23-24
mechanical, 22-23
Internal feedback, 197-206
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Inverse polar plots, 199-206
Inverse transformations, 81, 90-97
Isochronous-type controller, 59
Isoclines, 333

Jackson, A. 8., 129

Jaeger, J. C., 10

James, H. M., 178

JIC standard symbols, 215
Jury, E. 1., 322

Kochenburger, R. J., 312, 322, 329
Koenig, J. F., 109

Koff, R. F., 208

Korn, G. A., 129

Korn, T. M., 129

Lag compensation, 188-192
Lag-lead compensation, 195-197
Laplace transformation theorems, final-
value, 84
initial-value, 84—85
linearity, 78-79
real differentiation, 7678
real integration, 78
real translation, 76, 82-83, 342
Laplace transforms, 64-106
application of, 79-88
for arbitrary functions, 340-344
correlation with Fourier series and
Fourier integral, 335-338
definition of, 70-71
development of theorems and table,
71-79
general procedure, 82-83
inverse, 81, 90-97
for piecewise continuous functions,
85-88
of sampled-data systems, 322-324
table of, 72
Lead compensation, 192-195, 304-307
Ledley, R. S, 129
Lee, 8. Y., 230, 231
Levinthal, J. G., 109
Linear control systems, 25-26, 64
Linearization, 26-31
of nonlinear functions, 26-30
of operating curves, 30-31
Linvill, W. K., 322
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Log-magnitude diagrams, 154-163,
185-187 .

Log-modulus plots, 177-178, 186-187

Logarithmic decrement, 99

M contours, 169-178, 199206
on direct polar plot, 169-171
gain adjustment, 174-178
on inverse polar plot, 199-206
on log-modulus plot, 177-178, 186-187
M., adjustment, on direct polar plots,
174-177
on inverse polar plots, 199-206
on log-modulus diagrams, 177-178,
186--187
Mabie, H. H., 23
McLachlan, N. W, 10
MeNeil, 1., 208 .
Magnitude condition, 115, 119
Manipulated variable, 55
Mapping, 179-184
Mass, 7
Mass-spring-damper system, parallel,
16-17 : .
series, 7-8
Mayer, R., 150
Mechanical components, rotational,
10-11
translational, 6-8
Michalee, G. W., 23
Minimum-phase systems, 162-163
Minor feedback loop, 4042, 197-206
Missiles, dynamies of, 308-310
Modes of control (see Steady-state
analysis)
Motors, electric, 260-269
a-c, two-phase, 268-269
d-¢, armature-controlled, 264-266
field-controlled, 260-264
- hydraulic, 236-238
pneumatic, 2556
Murphy, G. J., 62

Natural frequency, 96-99

Nichols, N. B., 177-178

Nichols plots, 177-178
Non-minimum-phase systems, 163
Nyquist, H., 179

Nyquist stability criterion, 179-185
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Ocvirk, F. W., 23
Olson, H. F., 17
On-off systems, 311-315
with hysteresis and dead zone, 318-321
Open-loop control system, 2—4, 56-57
frequency response of, 154, 169-174,
184-185
transfer function of, 154
Operational amplifiers, 131
Operational notation, 8-10
Overlapped valves, 223-225

Parallel combinations, 13-17
electrical elements, 13-14
laws of, 13-16
mechanical elements, 15-17
Parallel compensation, 197-206
Partial-fraction expansions, 66-69, 91-92
for distinct zeros, 66-68, 91
for repeated zeros, 68-69, 92
Pelegrin, M. J., 322
Periodic function, 313-315, 335, 348-351
Phage margin, 185-187, 192
Phase plane, 311, 329-333
Phase-plane portrait, 330-333
Phase-plane trajectories, 330-333
Phillips, R. 8., 178
Piecewise continuous functions, 85-88,
331-332
Pilot valves, 219-233
three-way, 219-223
four-way, 226-233
Pipes, L. A,, 27
Pippenger, J. J., 208
Platform, stable, 300-308
Pneumatic control systems, 207-208,
239-259 :
air relay, 244, 246
compressors (see Compressors) -
controllers, 245-253
flapper-type, 245-250
force-type, 250-253
flapper amplifiers, 242-250
flow through orifices, 255-259
power supplies, 239-242
receiving units, 253-255
actuators, 254
cylinders, 254
motors, 255
two-stage amplifiers, 244-250
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Pneumatic cylinders, 254 .
Polar plots, direct, 166-169, 179-185,
304-305 :
inverse, 199-206
Poles, 180185, 339 :
Positive-displacement compressor,
240-242
Potentiometer, 143, 147, 268
Power supplies, hydraulic, 211-216
constant flow, 215-216
constant pressure, 211-214
pneumatic, 239-242
Pressure, cracking, 212, 216, 218
Pressure-regulating valves, 211-212
Proportional controller, 52-57
pneumatic, 245-246, 248, 252-253
Proportional plus derivative controller,
62
pneumatic, 246-249, 253
Proportional plus integral controller,
59-62
pneumatic, 249-250, 253
Proportional plus integral plus derivative
controller, 62
pneumatie, 250, 253
Proportional valves, 219
Pulse function, 73
Pumps, hydraulic, 208-211, 236
axial-piston, 210-211
fixed-displacement, 208-212,
215-216 o
gear, 208-209
radial-piston, 210-211
vane, 209-210
variable-delivery, 209-211, 214

Ragazzini, J. R., 322

Ramp function, 85-88

REAC, 143

Real translation, 76, 82-83, 342
Reducing valves, 217-219
Reethof, G., 228, 236, 239
Reference input, 2—4 ]
Reference operating point, 8, 26-34
Regulator, 5

Relief valves, 211-213, 218
Reset-type controller, 59 -
Resistance, electrical, 11-13
Response function, 65

Root locus, 111-128, 304-307
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Root locus, construction techniques,
angle, of arrival, 125
of departure, 123-125.
angle condition, 115-116 -
asymptotes, 116-117, 122-124
break-in point, 125-126
breakaway point, 117-118, 125-126
location on real axis, 116, 125
magnitude condition, 115, 119
summary, 124-127
determination of stability from,
111-114, 127-128 .
plot for sampled-data systems, 327-328
roots of characteristic equation,
111-114
transient performance from, 111-114,
127-128
Roots of characteristic equation, 65
from root locus, 111-114
(See also Characteristic function)
Rotational mechanical components,
10-11 ;
Rototrol, 266-267
Routh, E. J., 106
Routh’s criterion, 106-109, 119-120

Sampled-data systems, 311, 322-329
characteristic function of, 327-328
frequency response of, 328-329
impulse response of, 322-323
Laplace transforms in, 322-324
root-locus plot of, 327-328
z transforms in, 324-327

Saunders, R. M., 160

Savant, C. J., Jr., 111, 260

Scale factors, 136-139

Scott, E. J., 70

Scott, N. R., 129

Seaman, R. C., Jr., 345

Second-order system, frequency response

of, 159-161, 171-173
transient response of, 99-101, 105-106

Series combination, 13-17
electrical elements, 13-14
laws of, 13-16
mechanical elements, 15-17

Series compensation, 187-197
phase lag, 188-192
phase lag-lead, 195-197
phase lead, 192-195, 304-307



INDEX 401

Series equalizer, 188
Servo valves, 219
Servomechanism, 5
Shea, R. F., 281
Shearer, J. L 228, 236 239
Simulation, 143—148
of nonlinearities, 148
Sinusoidal function, 74-75
Sinusoidal response (see Frequeney
response)
Sittler, R. W., 322
Smith, G. W., 129
Sokolnikoff, E. 8., 27
Sokolnikoff, I. 8., 27
Soroka, W. W, 23
Speed control system, 4249, 238
Spirule, 119
Sponder, E., 109
Spool valves, 219, 228233
Spring, mechanical, 7
torsional, 10
Square-root device, 2425
Stability, 109-110
determined, from characteristic
function, 96-105
from Hurwitz criterion, 108-109
from impulse response, 105-106
from Nyquist criterion, 179-185
from root locus, 111-114, 127-128
from Routh’s criterion, 106-109
Stabilization (see Compensation)
Stable element, 301-308
Stable platform, 300-308
Stack controllers, 250
Static loop sensitivity, 111
Steady state, 50
Steady-state analysis, 5063
of derivative controller, 62
of integral controller, 51-52, 57-59
plus proportional controller, 5962
of proportional controller, 52-57
Steady-state constants, 55-57
Step function, 71 ‘
Step-function response, of first-order
system, 35-36, 79-82
of second-order system, 99—101
Sutherland, R. L., 17
Synchros, 270—272
control transformer, 271-272
generator-motor system, 270-271
Systems, closed-loop, 24, 4849

Systems, equivalent unity-feedback, 165~
166
linear, 25-26, 64
nonlinear, 311-333
open-loop, 2-4, 56-57
types of, 163-165, 168-169

Tachometer, d-c, 266268
Temperature control system, 36—42
Thomson, W. T., 70
Throttle valves, 216-218
Time constant, 36
experimental determination of, 161-162
Time scale, 139-143
Time shift, 76, 8283
Torque-force analogy, 20
Transfer function, 90, 154, 163-164
experimental determination of, 161-162
of open-loop control system, 154
Transforms (see Laplace transforms; 2
transforms)
Transient response, 63-65
from characteristic funetion, 89-110
correlation with frequency response,
171-174, 345-351
from differential equations, 64-70
from frequency response, 348-351
from Laplace transforms, 70-88
of second-order system, 99-101,
105-106
Transistor amplifiers, 281-289
coupling, 287
grounded-base, 281-283, 289
grounded-collector, 289
grounded-emitter, 283286
h parameters, 284-289
Translation, real, 76, 82-83, 342
Translational mechanical components,
6-8
Transmissions, hydraulic, 236-238
Truxal, J. G., 208, 260, 312
Tucker, G. K., 62
Tuteur, F. B., 228, 236, 250, 260, 281
Types, system, 163-165, 168—169

Undamped natural frequency, 97-99
Underlapped valves, 223-225, 228-229
Unity feedback, 4

equivalent systems, 165-166
Unloading valves, 213-214
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Vacuum-tube amplifiers, 272-281

chopper-stabilized, 279

coupling of, 278-279

pentode, 277278

push-pull, 279281

tetrode, 277278

triode, 272-277

Valves, hydraulic, 211-236

chatter of, 217, 219, 232-233

flow equations, 217, 220-236

forces on, 228-233

JIC symbols, 215

types of, check, 213
flapper, 233-236
overlapped, 223-225
pilot (see Pilot valves)
pressure-regulating, 211-212

differential, 215-217

relief, 211-213, 218
throttle, 216218
underlapped, 223225, 228229
unloading, 213-214

AUTOMATIC CONTROL ENGINEERING

Variables, controlled, 24, 55
indirectly controlled, 4849
Vector loci plots (see Polar plots)

Walking-beam linkage, 32-35
Ward Leonard system, 265
Weighting function, 344
Williamson, H., 253

Wills, D. M., 62

Wood, R. C., 129

Wrigley, W., 298

z transforms, 324-329
of sampled-data systems, 324-329
table of, 325

Zadeh, L. A., 322

Zeros of characteristic function, 65
complex conjugate, 9397
distinct, 6668, 91
repeated, 66, 6869, 91-92
(See also Characteristic function)
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