Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 3: Linearization

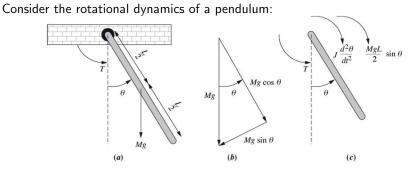
In this Lecture, you will learn:

How to Linearize a Nonlinear System System.

- Taylor Series Expansion
- Derivatives
- L'hoptial's rule
- Multiple Inputs/ Multiple States

Lets Start with an Example

A Simple Pendulum

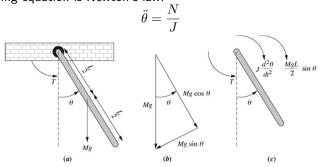


- The *input* is a motor-driven moment, T.
- The *output* is the angle, θ .
- The moment of inertia about the pivot point is J.
- The only external force is gravity, Mg, applied at the center of mass.
- Force creates a moment about the pivot (See Figure b)):

$$N = -Mg\sin\theta \cdot \frac{l}{2}$$

A Simple Pendulum

The governing equation is Newton's law:



Equations of Motion (EOM):

$$\ddot{\theta} = -\frac{Mgl}{2J}\sin\theta + \frac{T}{J}$$
$$y = \theta$$

First-order form: Let $x_1 = \theta$, $x_2 = \dot{\theta}$. $\dot{x}_1 = x_2$ $\dot{x}_2 = -\frac{Mgl}{2J}\sin x_1 + \frac{T}{J}$ $y = x_1$

A Simple Pendulum

The Problem

First-order form:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{Mgl}{2J}\sin x_1 + \frac{T}{J}$$

$$y = x_1$$

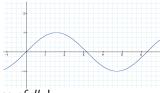
Although we have the system in first-order form, it cannot be put in state-space because of the $\sin x_1$ term.

What to do???

Although $\sin x$ is nonlinear, small sections look linear.

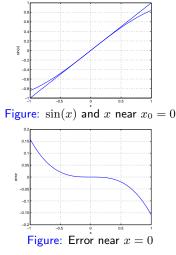
- Near x = 0: $\sin x \cong x$
- Near $x = \pi/2$: $\sin x \approx 1$
- Near $x = \pi$: $\sin x \cong \pi x$

We must use these linear approximations very carefully!

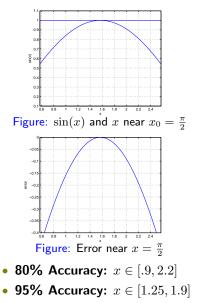


Accuracy of the Small Angle Approximation

The approximation will only be accurate for a narrow band of x.



- 80% Accuracy: $x \in [-1.2, 1.2]$
- 95% Accuracy: $x \in [-.7, .7]$



Lecture 3: Control Systems

Linear Approximation

We can use the tangent to approximate a nonlinear function near a point x_0 . Key Point: The approximation is <u>tangent</u> to the function at the point x_0 .

 $f(x) \cong ax + b$

• The slope is given by

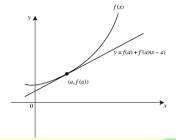
$$a = \frac{d}{dx}f(x)|_{x=x_0}$$

• The y-intercept is given by

$$b = f(x_0) - ax_0$$

The linear approximation is given by

$$f(x) \cong f(x_0) + \frac{d}{dx}f(x)|_{x=x_0}(x-x_0)$$



A General Method For Linear Approximation

Problem: Approximate the scalar function f(x) near the point x_0 using

y(x) = ax + b

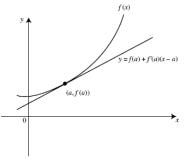


Figure 9.2-1

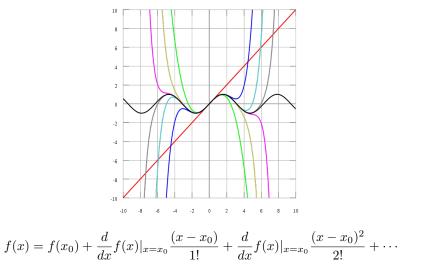
The Linear Approximation is given by

$$y(x) = f(x_0) + \frac{d}{dx}f(x)|_{x=x_0}(x - x_0)$$

Lecture 3: Control Systems

Linear Approximation

Note: The Linear Approximation is just the first two terms in the Taylor Series representation.



Example: Pendulum

Return to the dynamics of a pendulum:

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = -\frac{Mgl}{2J}\sin x_1 + \frac{1}{J}T$$
$$y = x_1$$

The nonlinear term is $\sin x_1$

- We want to linearize $\sin x_1$.
- Choose an operating point, $x_0!$
 - Depends on what we want to do!
 - Options are limited.

Disturbance rejection: $x_0 = 0$

Balance: $x_0 = \pi$

Tracking: $x_0 = ???$

Example: Balance an Inverted Pendulum

Applications: Walking robots.

An inverted pendulum has $x \cong \pi$.

• Tangent:

$$a = \frac{d}{dx}f(x)|_{x=x_0} = \cos(\pi) = -1$$

Intersect:

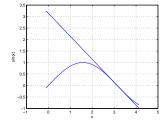
$$b = f(x_0) - ax_0 = \sin(\pi) + \pi = \pi.$$

- $f(x_0) = \sin(\pi) = 0$
- Finally, for $x \cong \pi$

$$\sin(x) \cong \pi - x$$

This gives the first-order dynamics:

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= \frac{Mgl}{2J} x_1 - \frac{Mgl}{2J} \pi + \frac{1}{J}T \\ y &= x_1 \end{split}$$

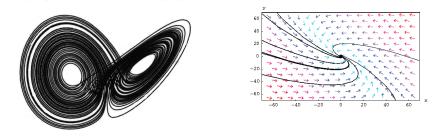


New Problem: The constant term $-\frac{Mgl}{2J}\pi$ doesn't fit in state-space:

$$\dot{x} = Ax + Bu$$

Equilibrium Points

Problem: $\dot{x} \neq 0$ when x = 0. We need a new concept



Definition 1.

 x_0 is an **Equilibrium Point** of $\dot{x} = f(x)$ if $\dot{x} = 0$ when $x = x_0$. i.e. $f(x_0) = 0$

- Nonlinear systems may have *many* equilibrium points.
- Linear (affine) systems only have one equilibrium point.
- In a state-space system, $x_0 = 0$ is the *unique* equilibrium point.

A Change of Variables

Consider a New Variable $\Delta x = x - x_0$

For state-space, we need $x_0 = 0$ to be the equilibrium point. The nonlinear pendulum has infinitely many equilibria.

- Down equilibria: $x_0 = 0 + 2\pi n$ for $n = 1, \cdots, \infty$
- Up equilibria: $x_0 = \pi + 2\pi n$ for $n = 1, \cdots, \infty$

Our linearized pendulum has one equilibrium at $x_0 = \pi$:

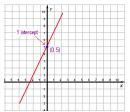
$$\dot{x}_1 = x_2,$$
 $\dot{x}_2 = \frac{Mgl}{2J}(x_1 - \pi) + \frac{1}{J}T,$ $y = x_1$

Problem: For state-space (or any standard form), we require $x_0 = 0$. **Solution:** Define a new variable $\Delta x = x - x_0$

Then

$$\Delta \dot{x} = \dot{x} = a(\Delta x - \frac{b}{a}) + b = a\Delta x$$

• Thus $\Delta x_0 = 0$ is the equilibrium!!!



Measuring Displacement from Equilibrium

Pendulum Example

Return to the pendulum.

• Equilibrium at $x_{0,1} = \pi$, $x_{0,2} = 0$.

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= \frac{Mgl}{2J}(x_1 - \pi) + \frac{1}{J}T \end{split}$$

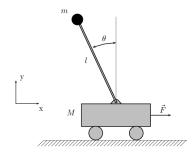
Let

$$\Delta x_1 = x_1 - \pi$$
$$\Delta x_2 = x_2$$

New Dynamics:

$$\Delta \dot{x}_1 = \Delta x_2$$
$$\Delta \dot{x}_2 = \frac{Mgl}{2J}\Delta x_1 + \frac{1}{J}T$$

 Δx_1 is angle from the vertical.



Measuring Displacement from Equilibrium

Pendulum Example

Now we are ready for state-space.

New Dynamics:

$$\Delta \dot{x}_1 = \Delta x_2$$
$$\Delta \dot{x}_2 = \frac{Mgl}{2J} \Delta x_1 + \frac{1}{J}T$$

State-Space Form:

$$\Delta \dot{x} = \begin{bmatrix} 0 & 1\\ \frac{Mgl}{2J} & 0 \end{bmatrix} \Delta x + \begin{bmatrix} 0\\ \frac{1}{J} \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \Delta x$$
$$A = \begin{bmatrix} 0 & 1\\ \frac{Mgl}{2J} & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0\\ \frac{1}{J} \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 0 \end{bmatrix}$$

Although not for the pendulum, you may sometimes need to linearize functions of the input and output!

Example: Balance an Inverted Pendulum

Applications: Walking robots.

Example: Balance an Inverted Pendulum

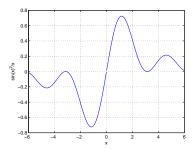
Applications: Segway.

Numerical Example: Using l'Hôpital's rule

Occasionally you will encounter a system such as

$$\ddot{x}(t) = -\dot{x}(t) + \frac{\sin^2(x(t))}{x(t)}$$

where you want to linearize about the **zero equilibrium**.



The nonlinear term is $\frac{\sin^2 x}{x}$ with equilibrium point $x_0 = 0$. To linearize this term about $x_0 = 0$, use the formula:

$$f(x) \cong f(x_0) + f'(x_0)(x - x_0)$$

To do this we must calculate $f(x_0)$ and $f'(x_0)$.

Lets start with $f(x_0)$. Initially, we see that $f(0) = \frac{0}{0}$, which is indeterminate. To help, we use L'hopital's Rule.

L'hopital's Rule

Theorem 2 (l'Hôpital's Rule).

If g(0) = 0 and h(0) = 0, then

$$\lim_{x \to 0} \frac{g(x)}{h(x)} = \lim_{x \to 0} \frac{g'(x)}{h'(x)}$$

If we apply this to
$$f(x) = rac{\sin^2(x)}{x}$$
, then

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2\sin x \cos x}{1} = \frac{0}{1} = 0$$

which is as expected. Now,

$$f'(x) = \frac{2\sin x \cos x}{x} - \frac{\sin^2 x}{x^2} = \frac{2x\sin x \cos x - \sin^2 x}{x^2}$$

As before,

$$f'(0) = \frac{0}{0}$$

Example Continued

So once more we apply L'hopital's rule:

$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} \frac{2\sin x \cos x + 2x \cos^2 x - 2x \sin^2 x - 2\sin x \cos x}{2x}$$
$$= \lim_{x \to 0} \frac{(2x(\cos^2 x + -\sin^2 x))}{2x} = \frac{0}{0}$$

Ooops, we must apply l'Hôpital's rule AGAIN:

$$\lim_{x \to 0} \frac{(2x(\cos^2 x - \sin^2 x))}{2x}$$
$$= \frac{2(\cos^x - \sin^2) - 8x\cos x \sin x}{2} = \frac{2}{2} = 1$$

Which was a lot of work for such a simple answer (easier way?). We have the linearized equation of motion:

$$\ddot{x}(t) = -\dot{x}(t) + 1 \cdot x(1) + 0$$

Which in standard form is $x_1 = x$, $x_2 = \dot{x}$, so

$$\dot{x} = \begin{bmatrix} 0 & 1\\ 1 & -1 \end{bmatrix} x$$

What have we learned today?

How to Linearize a Nonlinear System System.

- Taylor Series Expansion
- Derivatives
- L'hoptial's rule
- Multiple Inputs/ Multiple States

Next Lecture: Laplace Transform