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Lecture 3: Linearization



Introduction

In this Lecture, you will learn:

How to Linearize a Nonlinear System System.

• Taylor Series Expansion

• Derivatives

• L’hoptial’s rule

• Multiple Inputs/ Multiple States
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Lets Start with an Example
A Simple Pendulum

Consider the rotational dynamics of a pendulum:

• The input is a motor-driven moment, T .
• The output is the angle, θ.
• The moment of inertia about the pivot point is J .
• The only external force is gravity, Mg, applied at the center of mass.
• Force creates a moment about the pivot (See Figure b)):

N = −Mg sin θ · l
2

M. Peet Lecture 3: Control Systems 3 / 21



A Simple Pendulum

The governing equation is Newton’s law:

θ̈ =
N

J

Equations of Motion (EOM):

θ̈ = −Mgl

2J
sin θ +

T

J
y = θ

First-order form: Let x1 = θ, x2 = θ̇.

ẋ1 = x2

ẋ2 = −Mgl

2J
sinx1 +

T

J
y = x1
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A Simple Pendulum
The Problem

First-order form:

ẋ1 = x2

ẋ2 = −Mgl

2J
sinx1 +

T

J
y = x1

Although we have the system in first-order form, it cannot be put in state-space
because of the sinx1 term.
What to do???

Although sinx is nonlinear,
small sections look linear.

• Near x = 0: sinx ∼= x

• Near x = π/2: sinx ∼= 1

• Near x = π: sinx ∼= π − x

We must use these linear approximations very carefully !
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Accuracy of the Small Angle Approximation
The approximation will only be accurate for a narrow band of x.
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Figure: sin(x) and x near x0 = 0
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Figure: sin(x) and x near x0 = π
2
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Figure: Error near x = 0

• 80% Accuracy: x ∈ [−1.2, 1.2]

• 95% Accuracy: x ∈ [−.7, .7]
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Figure: Error near x = π
2

• 80% Accuracy: x ∈ [.9, 2.2]

• 95% Accuracy: x ∈ [1.25, 1.9]
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Linear Approximation

We can use the tangent to approximate a nonlinear function near a point x0.

Key Point: The approximation is tangent to the function at the point x0.

f(x) ∼= ax+ b

• The slope is given by

a =
d

dx
f(x)|x=x0

• The y-intercept is given by

b = f(x0)− ax0

The linear approximation is given by

f(x) ∼= f(x0) +
d

dx
f(x)|x=x0(x− x0)
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A General Method For Linear Approximation

Problem: Approximate the scalar function f(x) near the point x0 using

y(x) = ax+ b

The Linear Approximation is given by

y(x) = f(x0) +
d

dx
f(x)|x=x0

(x− x0)
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Linear Approximation

Note: The Linear Approximation is just the first two terms in the Taylor Series
representation.

f(x) = f(x0) +
d

dx
f(x)|x=x0

(x− x0)

1!
+

d

dx
f(x)|x=x0

(x− x0)2

2!
+ · · ·
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Example: Pendulum

Return to the dynamics of a pendulum:

ẋ1 = x2

ẋ2 = −Mgl

2J
sinx1 +

1

J
T

y = x1

The nonlinear term is sinx1

• We want to linearize sinx1.

• Choose an operating point, x0!
I Depends on what we want to do!
I Options are limited.

Disturbance rejection: x0 = 0

Balance: x0 = π

Tracking: x0 =???
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Example: Balance an Inverted Pendulum

Applications: Walking robots.

An inverted pendulum has x ∼= π.

• Tangent:

a =
d

dx
f(x)|x=x0 = cos(π) = −1

• Intersect:

b = f(x0)− ax0 = sin(π) + π = π.

• f(x0) = sin(π) = 0

• Finally, for x ∼= π

sin(x) ∼= π − x
This gives the first-order dynamics:

ẋ1 = x2

ẋ2 =
Mgl

2J
x1 −

Mgl

2J
π +

1

J
T

y = x1
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New Problem: The constant
term −Mgl

2J π doesn’t fit in
state-space:

ẋ = Ax+Bu
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invertedpendulum_erect.mp4
Media File (video/mp4)



Equilibrium Points

Problem: ẋ 6= 0 when x = 0. We need a new concept

Definition 1.

x0 is an Equilibrium Point of ẋ = f(x) if ẋ = 0 when x = x0. i.e. f(x0) = 0

• Nonlinear systems may have many equilibrium points.

• Linear (affine) systems only have one equilibrium point.

• In a state-space system, x0 = 0 is the unique equilibrium point.
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A Change of Variables
Consider a New Variable ∆x = x− x0

For state-space, we need x0 = 0 to be the equilibrium point.
The nonlinear pendulum has infinitely many equilibria.

• Down equilibria: x0 = 0 + 2πn for n = 1, · · · ,∞
• Up equilibria: x0 = π + 2πn for n = 1, · · · ,∞

Our linearized pendulum has one equilibrium at x0 = π:

ẋ1 = x2, ẋ2 =
Mgl

2J
(x1 − π) +

1

J
T, y = x1

Problem: For state-space (or any standard form), we require x0 = 0.

Solution: Define a new variable ∆x = x− x0
• Then

∆ẋ = ẋ = a(∆x− b

a
) + b = a∆x

• Thus ∆x0 = 0 is the equilibrium!!!
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Measuring Displacement from Equilibrium
Pendulum Example

Return to the pendulum.

• Equilibrium at x0,1 = π, x0,2 = 0.

ẋ1 = x2

ẋ2 =
Mgl

2J
(x1 − π) +

1

J
T

• Let

∆x1 = x1 − π
∆x2 = x2

• New Dynamics:

∆ẋ1 = ∆x2

∆ẋ2 =
Mgl

2J
∆x1 +

1

J
T

∆x1 is angle from the vertical.
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Measuring Displacement from Equilibrium
Pendulum Example

Now we are ready for state-space.

New Dynamics:

∆ẋ1 = ∆x2

∆ẋ2 =
Mgl

2J
∆x1 +

1

J
T

State-Space Form:

∆ẋ =

[
0 1

Mgl
2J 0

]
∆x+

[
0
1
J

]
y =

[
1 0

]
∆x

A =

[
0 1

Mgl
2J 0

]
B =

[
0
1
J

]
C =

[
1 0

]
D =

[
0
]

Although not for the pendulum, you may sometimes need to linearize functions
of the input and output!
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Example: Balance an Inverted Pendulum

Applications: Walking robots.
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grizzle_walking_robot.mp4
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Example: Balance an Inverted Pendulum

Applications: Segway.
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Numerical Example: Using l’Hôpital’s rule

Occasionally you will encounter a
system such as

ẍ(t) = −ẋ(t) +
sin2(x(t))

x(t)

where you want to linearize about the
zero equilibrium.
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The nonlinear term is
sin2 x

x
with equilibrium point x0 = 0. To linearize this

term about x0 = 0, use the formula:

f(x) ∼= f(x0) + f ′(x0)(x− x0)

To do this we must calculate f(x0) and f ′(x0).

Lets start with f(x0). Initially, we see that f(0) =
0

0
, which is indeterminate.

To help, we use L’hopital’s Rule.
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L’hopital’s Rule

Theorem 2 (l’Hôpital’s Rule).

If g(0) = 0 and h(0) = 0, then

lim
x→0

g(x)

h(x)
= lim

x→0

g′(x)

h′(x)

If we apply this to f(x) =
sin2(x)

x
, then

lim
x→0

f(x) = lim
x→0

2 sinx cosx

1
=

0

1
= 0

which is as expected. Now,

f ′(x) =
2 sinx cosx

x
− sin2 x

x2
=

2x sinx cosx− sin2 x

x2

As before,

f ′(0) =
0

0
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Example Continued

So once more we apply L’hopital’s rule:

lim
x→0

f ′(x) = lim
x→0

2 sinx cosx+ 2x cos2 x− 2x sin2 x− 2 sinx cosx

2x

= lim
x→0

(2x(cos2 x+− sin2 x)

2x
=

0

0

Ooops, we must apply l’Hôpital’s rule AGAIN:

lim
x→0

(2x(cos2 x+− sin2 x)

2x

=
2(cosx− sin2)− 8x cosx sinx

2
=

2

2
= 1

Which was a lot of work for such a simple answer (easier way?). We have the
linearized equation of motion:

ẍ(t) = −ẋ(t) + 1 · x(1) + 0

Which in standard form is x1 = x, x2 = ẋ, so

ẋ =

[
0 1
1 −1

]
x
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Summary

What have we learned today?

How to Linearize a Nonlinear System System.

• Taylor Series Expansion

• Derivatives

• L’hoptial’s rule

• Multiple Inputs/ Multiple States

Next Lecture: Laplace Transform
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