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Lecture 6: Calculating the Transfer Function



Introduction

In this Lecture, you will learn: Transfer Functions

e Transfer Function Representation of a System
e State-Space to Transfer Function

e Direct Calculation of Transfer Functions

Block Diagram Algebra
e Modeling in the Frequency Domain
e Reducing Block Diagrams
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Previously:
The Laplace Transform of a Signal

Definition: We defined the Laplace transform of a Signal.

e Input, & = Au.

e QOutput, § = Ay
Theorem 1.
For a bounded, linear, causal, time-invariant system, y = Gu, there exists a
Transfer Function, G, so that the ratio of input to output is

(s)

(s

<

= G(s)

~—

>

In this lecture, we will discuss several ways of finding the Transfer Function
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Transfer Functions

Example: Simple System

State-Space:
(t) = —x(t) + u(t)

y(t) = x(t) — .5u(t) z(0)=0

Apply the Laplace transform to the first equation:

A(dc(t) =—z(t) + u(t)) which gives s(s) +x(0) = —&(s) + u(s).
Noting that 2(0) = 0 and solving for &(s) gives
(s+ 1)z(s) = u(s) and so Z(s) = . i 11)(5).

Similarly, the second equation gives §(s):
NN NN S oo 1=5(s4+1) ., 1s—1.
7(s) = &(s) — .ba(s) = =y 1u(s) bi(s) = poa au(s) = P 1u(s)
Thus we have the :

A 1s—1

Gls) = 2s+1
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Transfer Functions

Example: Step Response

The Transfer Function provides a convenient way to find the response to inputs.

Step Input Response: i(s) =1
A 1s—11 1s—1 ]
Uy = G U = — —_ = —_——_—— a2
y(s) (S)u(s) 25+ 1s 952 1 5 lf
_1 ( 2 1) o
2\l s 8§
Consulting our table of Laplace ! L LR 4 5
Transforms, tep Response
1 2 1 1
)= A1 _ZATLZ
y(t) 2 s+1 2 s
1 ; 0.1
=e -1t P
© ot i

o 3
Time (sec)
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Transfer Functions

Example: Sinusoid Response

Sine Function: i(s) = 2’ .
A ls—1 1 .
n — G -~ - - - _ - 02
i) = GO)ils) = 5o -
1 s—1 .
2834824541 e
—_— 1 5 1 710 2 a4 6 8 10
T 2\s2+1 s+1
Consulting our table of Laplace Transforms,
1 1 "
t) = ~cost — —e”" 0
y(t) 5 €O 5¢ .

0 2 4 6 8 10
t

Note that this is the same answer we got by integration in Lecture 4.
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Inverted Pendulum Example

Return to the pendulum.

Dynamics: m
- Mgl 1 0
= — =T
() = 5 2-0() + 5T (1) |
y(t) = 6(t) v
For the first equation, |—X 7
. . Mgl - 1 -
2 - _ _ Mgt 1
5°6(s)—0(0)—s6(0) 5.7 9(8)+JT(8)

Set #(0) = 0 and 2(0) = 0 and solve for 4(s):

- 1
Js? = 5F
Second Equation: j(s) = 0(s)
Transfer Function: 1 ]
G(s) = = Mgl
J 82— 55
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Inverted Pendulum Example: Impulse Response

Impuise Response

Impulse Input: d(s) =1
. Ar N n 1 1
9(s) = G(S)u(s) 782 — Mgl
2J
1 1
T J 1 l ~ —
(s — /) (s + /55
Figure: Impulse Response with
. ffl( L) R
Mgl Mgl
I 35 sty ar

In time-domain:

y(t):J\/Mgl<m —¢ ﬁ)

Pendulum Accelerates to infinity!
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Constructing the Transfer Function: Suspension System

jj
ixz
Y1

Recall the dynamics:

Zl(t) = —%Zl(t) — LZ1(f) + 72’2((‘,) + 722@)
Z4(t) = %Zl(t) + %21@) - (77[’2; nl’fi) 23(t) — %@(t) - n{f—iu(t)
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Constructing the Transfer Function: Suspension System
g [ -

Apply the Laplace Transform to the dynamics:

K
8221(8) = _ml 21(5) - L521(3) + 7122(8) + miSég(S)
K K K K
) = T+ (o) - (4 T8 ) () - et - 2l
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Constructing the Transfer Function: Suspension System

We isolate the z; and 2y terms:

c K K c R
(82 + —s+ 1) Z1(s) = <1 + s) Za(s)
M Me Me  Me
K K>\ . K c . K .
(82+ +1+2) 2(s) = <1+s) 2 (s) — —2a(s)
9(s) = 22(s)
Which yields
(e + )
21(8 ° 22(8)
(#+ s+ )
Koy e i}
e e E Y T s a Y
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Constructing the Transfer Function: Suspension System
Now we can plug in for Z; and solve for Z,:

Z9(s) =
Ko(mes? + cs + K)
MMy st + c(Mmy + me)sd + (Kime + Kimy, + Kom,)s? + cKas + K1K2

Compare to the State-Space Representation:

0
d 0 _K ¢ £ < o 8
22 _ e me me Me 2
dt |z @=1 o 0 0 1 3 1o |
sl w o(mem) k) L
- Zl
_[1 0 0 0] |2 0
y(t) = 0 0 1 0} - (t) + [0} u(t)
24

Note: We only used one output to find the transfer function.

M. Peet Lecture 6: Control Systems 12 /23



Block Diagrams

Series (Cascade) Interconnection

The interconnection of systems can be represent by block diagrams.

u

—>

Vi

N
>

EAN

Cascade of Systems: Suppose we have two systems: G and H.

Definition 2.

The Cascade or Series interconnection of two systems is

or

M. Peet

y = Hy

y = H(G(u))
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Block Diagrams

Series Connection

IO g EEOS ] e XSy — | HE)Gs) ——>

N
Ll

The Transfer function of a Series interconnection is Simple
e The output of system 1 is the input to system 2.
o Let G(s) and H(s) be the transfer functions for G' and H.
e Apply the Laplace transform to get

gi(s) = Gils)als)  i(s) = H(s)gu(s) = H(s)G(s)a(s)

The Transfer Function, T(s) for the cascade of G and H is

T(s) = H(s)G(s)
Note: The order of the Transfer Functions!
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Block Diagrams

Parallel Connection

The parallel Interconnection is even simpler.

Y
(9}

v

u ; y
+
H

Parallel Interconnection: Suppose we have two systems: G and H.

Y

Definition 3.

The Parallel interconnection of two systems is

y1=Gu  ya2=Hu y=y1+y

or
y=H(u) + G(u)
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Block Diagrams

Parallel Connection

G(s) —
u(s) ? y(s) —» H(s)+G(s) —>
+
H(s)

The Transfer function of a Parallel interconnection is trivial

Y

Y

e Apply the Laplace transform to get
§(5) = G1(s) + () = Gls)ils) + H()ils) = (A (s) + G(s)) ils)
o The Transfer Function, T(s) for the parallel interconnection of G and H is

T(s) = H(s) + G(s)
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Block Diagrams

Lower Feedback Interconnection

—( > K@) > G(s) >
u(s) + y(s)
Feedback:
o Controller: z = K(u — y) Plant: y = Gz
Applying the Laplace Transform gives
2(s) = —K(s)j(s) + K(s)a(s) j(s) = G(s)ii(s)

SO

§(5) = G()3(s) = —G(s)K (5)3(5) + C(s)K (s)(s)
Solving for g(s),
9(s) = as)
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Block Diagrams
Upper Feedback Interconnection

There is an alternative Feedback
interconnection K(s) <«

e Let u be the external
input/disturbance

e y is the output

Which yields
§(s) = G(s) (u(s) = K()3(s)) = G(s)als) = G(s)K ()i ()

hence the Transfer Function is given by

4(s) as).
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The Effect of Feedback: Impulse Response

Inverted Pendulum Model

Transfer Function A 1
G(s) = Js2 — Mgl
2
Controller: Static Gain: K(s) = K
Input: Impulse: 4(s) = 1.
Closed Loop: Lower Feedback
N K
G(s)K Js2— Mgl K
o CORE o T K
1+ G(s)K(s) 1+W JSQ—TQ-FK
First Case:
o If K > @, then K — Mgl >0, so e neone
. K/J
g(s) = /

24 (K70 - 49

o(t) = — i ( K/J—Mgl>

Mgl 2J
J\K/J - 55

M. Peet
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The Effect of Feedback: Impulse Response

Inverted Pendulum Model

Impuise Response

Ampltude

Time (sec)

Second Case:
o If K < M2 then K — 42 <0, so

K

1 1
s—\/K/J— M s /K] A

y(t) = ? (e\/mt e K/Jf%t)

4(s)

Important: Value of K determines stability vs. instability

M. Peet Lecture 6: Control Systems

20 / 23



Block Diagrams

Reduction

Now lets look at how to reduce a more complicated interconnections

y(s)

e(s) + +
—( > — ] 1/
DAt K1 s 1/s

Label
e The output from the inner loop z
e The input to the inner loop u
First Close the Inner Loop using the Lower Feedback Interconnection.

3 T Ky
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Block Diagrams

Reduction

We now have a reduced Block Diagram

e(s) +
Q K /(K +s) 1/s

Again, apply the Lower Feedback Interconnetion:

K,

N S+ . K, X
9(8) = — g —e) = s
1+s(1<1+s) s(K7 +s) + Ky
So the Transfer function is 7'(s) a3
o € lransrer runction Is S) = 77—
s2+ Kis+ K,
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Summary

What have we learned today?

Transfer Functions
e Transfer Function Representation of a System
e State-Space to Transfer Function

e Direct Calculation of Transfer Functions

Block Diagram Algebra
e Modeling in the Frequency Domain
e Reducing Block Diagrams

Next Lecture: Partial Fraction Expansion
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