Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 8: Response Characteristics

Overview

In this Lecture, you will learn:

Characteristics of the Response

• Stability

Real Poles

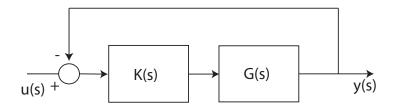
- Steady-State Error
- Rise Time
- Settling Time

Complex Poles

- Complex Pole Locations
- Damped/Natural Frequency
- Damping and Damping Ratio

Feedback Control

Recall the Feedback Interconnection



Feedback:

- Controller: $u_i = K(u y)$
- Plant: $y = Gu_i$

The output signal is $\hat{y}(s)$,

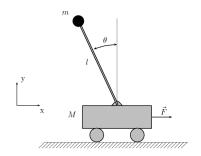
$$\hat{y}(s) = \frac{\hat{G}(s)\hat{K}(s)}{1 + \hat{G}(s)\hat{K}(s)}\hat{u}(s)$$

Controlling the Inverted Pendulum Model

Open Loop Transfer Function

$$\hat{G}(s) = \frac{1}{Js^2 - \frac{Mgl}{2}}$$

Controller: Static Gain: $\hat{K}(s) = K$ **Input:** Impulse: $\hat{u}(s) = 1$.



Closed Loop: Lower Feedback

$$\hat{y}(s) = \frac{\hat{G}(s)\hat{K}(s)}{1 + \hat{G}(s)\hat{K}(s)}\hat{u}(s) = \frac{\frac{K}{Js^2 - \frac{Mgl}{2}}}{1 + \frac{K}{Js^2 - \frac{Mgl}{2}}} = \frac{K}{Js^2 - \frac{Mgl}{2} + K}$$

Controlling the Inverted Pendulum Model

Closed Loop Impulse Response:

Lower Feedback

$$\hat{y}(s) = \frac{K}{Js^2 - \frac{Mgl}{2} + K}$$

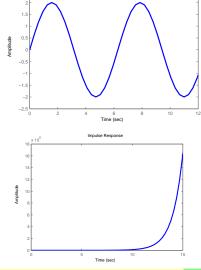
Traits:

- Infinite Oscillations
- Oscillates about 0.

Open Loop Impulse Response:

$$\hat{y}(s) = \frac{1}{J} \sqrt{\frac{2J}{Mgl}} \left(\frac{1}{s - \sqrt{\frac{Mgl}{2J}}} - \frac{1}{s + \sqrt{\frac{Mgl}{2J}}} \right)$$

Unstable!



Impulse Response

Lecture 8: Control Systems

M. Peet

Controlling the Suspension System

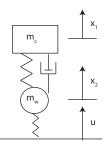
Open Loop Transfer Function: Set $m_c = m_w = g = c = K_1 = K_2 = 1$.

$$\hat{G}(s) = \frac{s^2 + s + 1}{s^4 + 2s^3 + 3s^2 + s + 1}$$

Controller: Static Gain: $\hat{K}(s) = k$

Closed Loop: Lower Feedback

$$\begin{split} \hat{y}(s) &= \frac{\hat{G}(s)\hat{K}(s)}{1+\hat{G}(s)\hat{K}(s)}\hat{u}(s) \\ &= \frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)} \end{split}$$



Controlling the Suspension Problem

Effect of changing the Feedback, \boldsymbol{k}

Closed Loop Step Response:

$$\begin{split} \hat{y}(s) &= \\ \frac{k(s^2+s+1)}{s^4+2s^3+(3+k)s^2+(1+k)s+(1+k)}\frac{1}{s} \end{split}$$

 $\mathsf{High}\ k:$

- Overshot the target
- Quick Response
- Closer to desired value of *f* Low *k*:
 - Slow Response
 - No overshoot
 - Final value is farther from 1.

Questions:

- Which Traits are important?
- How to predict the behaviour?

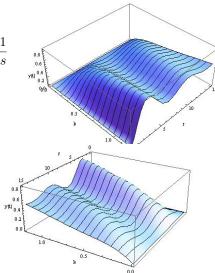


Figure: Step Response for different \boldsymbol{k}

M. Peet

Stability

The most basic property is **Stability**:

Definition 1.

A system, G is **Stable** if there exists a K > 0 such that

 $\|Gu\|_{L_2} \le K \|u\|_{L_2}$

Note: Although this is the true definition for systems defined by transfer functions, it is rarely used.

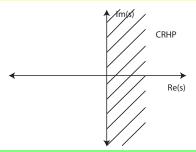
- · Bounded input means bounded output.
- Stable is $y(t) \to 0$ when $u(t) \to 0$.

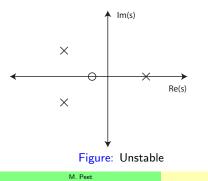
Stability

Definition 2.

The **Closed Right Half-Place**, *CRHP* is the set of complex numbers with non-negative real part.

 $\{s\in\mathbb{C}\,:\,\operatorname{\mathsf{Real}}(s)\geq 0\}$





Theorem 3.

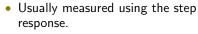
A system G is stable if and only if it's transfer function \hat{G} has no poles in the Closed Right Half Plane.

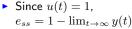
- Check stability by checking poles.
- x is a pole
- o is a zero

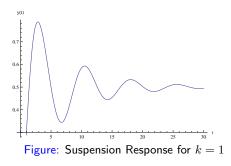
Definition 4.

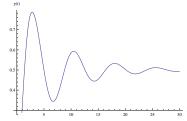
Steady-State Error for a stable system is the final difference between input and output.

$$e_{ss} = \lim_{t \to \infty} u(t) - y(t)$$









Recall: For any system G, by partial fraction expansion:

$$\hat{y}(s) = \hat{G}(s)\frac{1}{s} = \frac{r_0}{s} + \frac{r_1}{s-p_1} + \ldots + \frac{r_n}{s-p_n}$$

So

$$y(t) = r_0 \mathbf{1}(t) + r_1 e^{p_1 t} + \ldots + r_n e^{p_n t}$$

which means

$$\lim_{t \to \infty} y(t) = r_0$$

and hence

$$e_{ss} = 1 - r_0$$

M. Peet

Lecture 8: Control Systems

The steady-state error is given by r_0 .

 $e_{ss} = 1 - r_0$

Recall: The residue at s = 0 is r_0 and is found as

$$r_0 = \hat{G}(s)|_{s=0} = \lim_{s \to 0} \hat{G}(s)$$

Thus the steady-state error is

$$e_{ss} = 1 - \lim_{s \to 0} \hat{G}(s)$$

This can be generalized to find the limit of any signal:

Theorem 5 (Final Value Theorem).

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} s \hat{y}(s)$$

- Assumes the limit exists (Stability)
- Can be used to find response to other inputs
 - Ramp, impulse, etc.

M. Peet

Numerical Example

$$\hat{G}(s) = \frac{k(s^2 + s + 1)}{s^4 + 2s^3 + (3 + k)s^2 + (1 + k)s + (1 + k)}$$

The steady-state response is

$$y_{ss} = \lim_{s \to 0} s\hat{y}(s) = \lim_{s \to 0} \hat{G}(s)$$

=
$$\lim_{s \to 0} \frac{k(s^2 + s + 1)}{s^4 + 2s^3 + (3 + k)s^2 + (1 + k)s + (1 + k)}$$

=
$$\frac{k}{1 + k}$$

The steady-state error is

$$e_{ss} = 1 - y_{ss} = 1 - \frac{k}{1+k}$$
$$= \frac{1}{1+k}$$

• When k = 0, $e_{ss} = 1$

• As
$$k \to \infty$$
, $e_{ss} = 0$

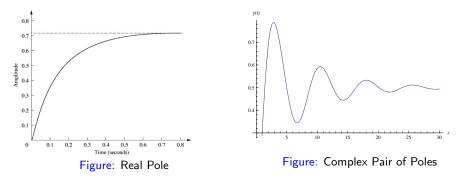
M. Peet

Dynamic Response Characteristics

Two Types of Response

By now, you know that motion is dominated by the poles!

- Simplify the response by considering response of each pole.
- Allows quantitative analysis



We start with Real Poles

Consider a real pole step response:

$$\hat{y}(s) = \frac{r}{s-p}\frac{1}{s} = \frac{\frac{r}{p}}{s-p} - \frac{\frac{r}{p}}{s}$$

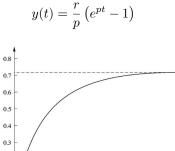
• Assume stable, so
$$p < 0$$

Cases:

- p > 0 implies $y(t) \to \infty$
- p < 0 implies $y(t) \rightarrow -\frac{r}{p}$

Steady-State Error:

$$e_{ss} = 1 - \frac{r}{p}$$



Time (seconds)

Amplitude

0.2 - 0.1 - 0.2 - 0.3 - 0.4 - 0.5 - 0.6 - 0.7 - 0.8 - 0.8

Rise Time

Besides the final value:

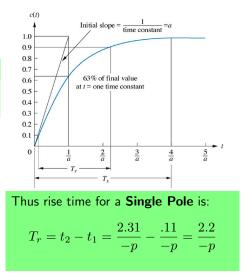
• How quickly will the system respond?

Definition 6.

The rise time, T_r , is the time it takes to go from .1 to .9 of the final value.

$$t_1$$
 when $y(t_1) = -.1\frac{r}{p}$ is found as
 $-.1 = e^{pt_1} - 1$
 $\ln(1 - .1) = pt_1$
 $t_1 = \frac{\ln .9}{p} = \frac{.11}{-p}$

Likewise for $y(t_2) = -.9\frac{r}{p}$ we get $t_2 = \frac{\ln .1}{p} = \frac{2.31}{-p}$



M. Peet

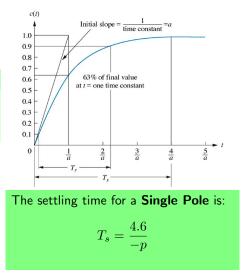
- Will it stay there:
 - How fast does it converge?
 - More important for complex poles.

Definition 7.

The **Settling Time**, T_s , is the time it takes to reach and stay within .99 of the final value.

The time at
$$y(T_s) = -.99\frac{r}{p}$$
 is found as

$$-.99 = e^{pT_s} - 1$$
$$\ln(.01) = pT_s$$
$$T_s = \frac{\ln .01}{p} = -\frac{4.6}{p}$$



Solution for Complex Poles

$$\hat{y}(s) = \frac{\omega_d^2 + \sigma^2}{s^2 + 2\sigma s + \omega_d^2 + \sigma^2} \frac{1}{s} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \frac{1}{s} = \frac{k_1 s + k_2}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{r_2}{s}$$

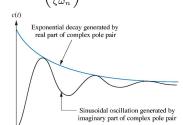
The poles are at $s = \sigma \pm \omega_d \imath$ and s = 0. The solution is:

$$y(t) = 1 - e^{\sigma t} \left(\cos(\omega_d t) - \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$
$$= 1 - e^{\sigma t} \frac{\omega_n}{\omega_d} \sin(\omega_d t + \phi)$$

Where
$$\sigma = \zeta \omega_n$$
, $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ and $\phi = \tan^{-1} \left(\frac{\omega_d}{\zeta \omega_n}\right)$.

The result is oscillation with an Exponential Envelope.

- Envelope decays at rate σ
- Speed of oscillation is ω_d, the Damped Frequency

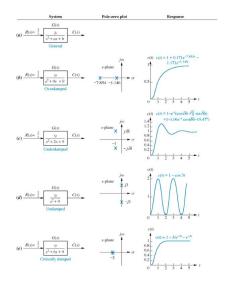


- 1

Damping

We use several adjectives to describe exponential decay:

- Undamped
 - Oscillation continues forever, $\sigma = 0$
- Underdamped
 - Oscillation continues for many cycles.
- Damped
- Critically Damped
 - No oscillation or overshoot. $\omega = 0$



Damping Ratio

Besides ω , there is another way to measure oscillation

Definition 8.

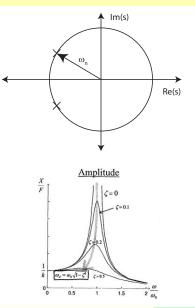
The Natural Frequency of a pole at $p = \sigma + \imath \omega_d$ is $\omega_n = \sqrt{\sigma^2 + \omega_d^2}$.

• for
$$\hat{y}(s) = \frac{1}{s^2 + as + b} \frac{1}{s}$$
, $\omega_n = \sqrt{b}$

• Radius of the pole in complex plane.

Frequency of least damping.

• Also known as resonant frequency



Damping Ratio

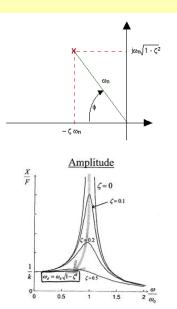
Besides $\sigma,$ there are other ways to measure damping

Definition 9.

The **Damping Ratio** of a pole at $p = \sigma + \imath \omega$ is $\zeta = \frac{|\sigma|}{\omega_n}$.

• for
$$\hat{y}(s) = \frac{1}{s^2 + as + b} \frac{1}{s}$$
, $\zeta = \frac{a}{2\omega_n}$.

- The amount the amplitude decreases per oscillation.
- The angle that the pole makes in the complex plane.



Summary

What have we learned today?

Characteristics of the Response

Real Poles

- Steady-State Error
- Rise Time
- Settling Time

Complex Poles

- Complex Pole Locations
- Damped/Natural Frequency
- Damping and Damping Ratio

Continued in Next Lecture