INFLUENCE COEFFICIENTS

16. Determine the influence coefficients of the three-degree-of-freedom spring-mass system as shown in Fig. 3-23 below.

From definition, influence coefficient α_{ij} is the deflection at the coordinate i due to a unit force applied at coordinate j. For a three-degree-of-freedom system, there will be nine influence coefficients. They are α_{11} , α_{12} , α_{13} , α_{21} , α_{22} , α_{23} , α_{31} , α_{32} , and α_{33} .

When a unit force is applied to mass 4m as shown in Fig. 3-23(a), the spring of stiffness 3k will stretch 1/3k, equal to thus $\alpha_{11} = 1/3k$.

When mass 4m deflects $\alpha_{11} = 1/3k$ under the action of a unit force, then masses 2m and m will simply move downward by the same amount, i.e.,

$$\alpha_{21} = \alpha_{31} = \alpha_{11} = 1/3k$$

By Maxwell's reciprocal principle, $\alpha_{ij}=\alpha_{ji}$. Hence $\alpha_{31}=\alpha_{13}$, $\alpha_{12}=\alpha_{21}$, and so

$$\alpha_{11} = \alpha_{12} = \alpha_{13} = \alpha_{21} = \alpha_{31} = 1/3k$$

To find α_{22} , apply a unit force to mass 2m as shown in Fig. 3-23(b). The two springs 3k and k are in series, and their equivalent spring constant is given by

$$1/k_{eq} = 1/3k + 1/k$$
 or $k_{eq} = 3k/4$

The deflection is $F/k_{\rm eq}$, or $1/(3k/4)=4/3k=\alpha_{22}$; and as mass m hangs on mass 2m, $\alpha_{32}=\alpha_{22}$. Now $\alpha_{32}=\alpha_{23}$ and hence

$$\alpha_{22} = \alpha_{23} = \alpha_{32}$$

To find α_{33} , apply a unit force to mass m. The three springs are in series and their equivalent spring stiffness is given by

$$1/k_{eq} = 1/3k + 1/k + 1/k = 7/3k$$
 or $k_{eq} = 3k/7$

and

$$\alpha_{33} = F/k_{\rm eq} = 1/(3k/7) = 7/3k$$

The influence coefficients of the system are

$$\alpha_{11} = 1/3k$$
, $\alpha_{12} = 1/3k$, $\alpha_{13} = 1/3k$
 $\alpha_{21} = 1/3k$, $\alpha_{22} = 4/3k$, $\alpha_{23} = 4/3k$
 $\alpha_{31} = 1/3k$, $\alpha_{32} = 4/3k$, $\alpha_{33} = 7/3k$

Fig. 3-23

17. Determine the influence coefficients of the triple pendulum of lengths L_1, L_2, L_3 and masses m_1, m_2, m_3 as shown in Fig. 3-24.

Apply a unit horizontal force to the mass m_1 of the pendulum as shown in Fig. 3-25 below and write force equations about mass m_1 . Since m_1 is in equilibrium,

$$T\sin\theta = 1 \tag{1}$$

$$T\cos\theta = g(m_1 + m_2 + m_3) \tag{2}$$

Divide equation (1) by (2) to obtain

$$\tan \theta = 1/g(m_1 + m_2 + m_3)$$

Fig. 3-24

Fig. 3-25

Fig. 3-26

Fig. 3-27

CHAP. 3]

SEVERAL DEGREES OF FREEDOM

For small angles of oscillation, $\tan \theta = \sin \theta$; and from the configuration of the syste $\sin \theta = \alpha_{11}/L_1$. Hence $\alpha_{11} = L_1/g(m_3 + m_2 + m_1)$

and $\alpha_{11} = \alpha_{21} = \alpha_{31}$ from the geometry of the system.

When a unit horizontal force is applied to m_2 as shown in Fig. 3-26 above, mass m_1 will displaced a distance α_{11} , but m_2 and m_3 will each be displaced an additional distance equal $L_2/g(m_2+m_3)$. Therefore,

$$\alpha_{12} = \alpha_{11}$$
 and $\alpha_{22} = \alpha_{32} = \alpha_{11} + L_2/g(m_2 + m_3)$

Similarly, when a unit horizontal force is the only force acting on mass m_3 as shown in Fig. 3-above, mass m_1 will be simply displaced a distance α_{11} , and m_2 a distance $[\alpha_{11} + L_2/g(m_2 + m_3)]$ while m_3 will be displaced an additional distance equal to L_3/gm_3 ; then

$$\alpha_{13} = \alpha_{11}, \qquad \alpha_{23} = \alpha_{22}, \qquad \alpha_{33} = \alpha_{22} + L_3/gm_3$$

Thus the influence coefficients are given by

$$lpha_{11} = lpha_{12} = lpha_{13} = rac{L_1}{g(m_1 + m_2 + m_3)}$$
 $lpha_{21} = rac{L_1}{g(m_1 + m_2 + m_3)}$, $lpha_{22} = lpha_{23} = rac{L_1}{g(m_1 + m_2 + m_3)} + rac{L_2}{g(m_2 + m_3)}$
 $lpha_{31} = rac{L_1}{g(m_1 + m_2 + m_3)}$, $lpha_{32} = rac{L_1}{g(m_1 + m_2 + m_3)} + rac{L_2}{g(m_2 + m_3)}$, $lpha_{33} = rac{L_1}{g(m_1 + m_2 + m_3)} + rac{L_2}{g(m_2 + m_3)} + rac{L_2}{g(m_2 + m_3)}$

Designate the masses as m_1, m_2 , and m_3 . Apply a one lb unit force to m_1 . From the free-bod force diagrams, Fig. 3-29(a),

$$k\alpha_{11} + k(\alpha_{11} - \alpha_{31}) + k(\alpha_{11} - \alpha_{21}) = 1 3k\alpha_{11} - k\alpha_{21} - k\alpha_{31} = 1 k(\alpha_{11} - \alpha_{21}) = k(\alpha_{21} - \alpha_{31}) + k\alpha_{21} or 3\alpha_{21} - \alpha_{31} - \alpha_{11} = 0 k(\alpha_{21} - \alpha_{31}) + k(\alpha_{11} - \alpha_{31}) = k\alpha_{31} 3\alpha_{31} - \alpha_{11} - \alpha_{21} = 0$$

which gives

$$\alpha_{11} = 1/2k$$
, $\alpha_{21} = 1/4k$, $\alpha_{31} = 1/4k$

SEVERAL DEGREES OF FREEDOM

[CHAP. 3

Similarly, the following force equations will be obtained when a unit force is applied to mass m_i as shown in Fig. 3-29(b) above:

$$\begin{array}{llll} k(\alpha_{12}-\alpha_{32})+k\alpha_{12}&=k(\alpha_{22}-\alpha_{12})\\ k(\alpha_{22}-\alpha_{12})+k\alpha_{22}+k(\alpha_{22}-\alpha_{32})&=1 & \text{or} & 3k\alpha_{22}-k\alpha_{32}-k\alpha_{12}&=1\\ k(\alpha_{22}-\alpha_{32})+k(\alpha_{12}-\alpha_{32})&=k\alpha_{32} & 3\alpha_{32}-\alpha_{12}-\alpha_{22}&=0 \end{array}$$

from which

$$\alpha_{12} = 1/4k, \quad \alpha_{22} = 1/2k, \quad \alpha_{32} = 1/4k$$

And when a unit force is applied to mass m_3 as shown in Fig. 3-29(c) above, we obtain

$$k(\alpha_{33}-\alpha_{13})+k(\alpha_{23}-\alpha_{13})=k\alpha_{13} \\ k(\alpha_{23}-\alpha_{13})+k\alpha_{23}=k(\alpha_{33}-\alpha_{23}) \\ k(\alpha_{33}-\alpha_{13})+k(\alpha_{33}-\alpha_{23})+k\alpha_{33}=1$$

$$3\alpha_{13}-\alpha_{23}-\alpha_{33}=0 \\ 3\alpha_{23}-\alpha_{33}-\alpha_{13}=0 \\ 3k\alpha_{33}-k\alpha_{13}-k\alpha_{23}=1$$

from which

$$\alpha_{13} = 1/4k, \quad \alpha_{23} = 1/4k, \quad \alpha_{33} = 1/2k$$

The influence coefficients of the system are then

90

19. Calculate the influence coefficients of a dynamic system consisting of three equal masses attached to a taut string as shown in Fig. 3-30.

The tension T in the string can be assumed to remain unchanged for small angles of oscillation. α_{11} is the deflection at position 1 due to a unit force applied to position 1.

Fig. 3-30

At the position shown in Fig. 3-31, the unit force is balanced by the tension forces exerted by the string. For small angles of oscillation this can be written as

$$(\alpha_{11}/L)T + (\alpha_{11}/3L)T = 1$$

which gives $\alpha_{11} = 3L/4T$.

 $lpha_{21}$ and $lpha_{31}$ are the deflections of the masses m_2 and m_3 due to a unit force applied to m_1 They are given by

$$\alpha_{21} = \frac{2}{3}(\alpha_{11}) = L/2T, \qquad \alpha_{31} = \frac{1}{3}(\alpha_{11}) = L/4T$$

Fig. 3-31

Fig. 3-32

To determine α_{22} , apply a unit force to mass m_2 as shown in Fig. 3-32. The forces acting \mathbf{r} mass m_2 are the applied unit force and the tension forces; then

$$(\alpha_{22}/2L)T + (\alpha_{22}/2L)T = 1$$

which gives $\alpha_{22} = L/T$, and $\alpha_{12} = \alpha_{32} = L/2T$.

By symmetry, $\alpha_{11}=\alpha_{33}=3L/4T$; and by Maxwell's reciprocal theorem, $\alpha_{12}=\alpha_{21}$, $\alpha_{13}=\alpha_{13}=\alpha_{14}$ $\alpha_{23}=\alpha_{32}$. Thus the influence coefficients of the system are

$$lpha_{11} = 3L/4T,$$
 $lpha_{12} = L/2T,$ $lpha_{13} = L/4T$ $lpha_{21} = L/2T,$ $lpha_{22} = L/T,$ $lpha_{23} = L/2T$ $lpha_{31} = L/4T,$ $lpha_{32} = L/2T,$ $lpha_{33} = 3L/4T$

20. Prove Maxwell's reciprocal theorem $\alpha_{ij} = \alpha_{ji}$ for the simply supported beam with two concentrated loads acting as shown in Fig. 3-33.

The four influence coefficients of the system are α_{11} , α_{12} , α_{21} , α_{22} . It is necessary to show that $\alpha_{12} = \alpha_{21}$ in order to prove Maxwell's reciprocal theorem. This can be done by applying the loads in two cycles.

For the first cycle, apply W_1 first and then W_2 . When W_1 is alone at position 1, the influence coefficients are α_{11},α_{21} and

P.E. =
$$\frac{1}{2}W_1^2\alpha_{11}$$

When W_2 is applied after W_1 is on, the additional energy of the system is $\frac{1}{2}W_2^2\alpha_{22} + W_1(W_2\alpha_{12})$ and the total energy is therefore $\frac{1}{2}W_1^2\alpha_{11} + \frac{1}{2}W_2^2\alpha_{22} + W_1(W_2\alpha_{12})$.

For the second cycle, apply W_2 first and then W_1 . In a similar fashion, the total energy of the system is given by $\frac{1}{2}W_2^2 \alpha_{22} + \frac{1}{2}W_1^2 \alpha_{11} + W_2 (W_1 \alpha_{21})$.

Since at the ends of both cycles of application of loads the same state prevails, the two energy expressions must be the same. Thus by equating the two energy expressions, we obtain $\alpha_{12} = \alpha_{21}$.

It can be shown that the Maxwell's reciprocal theorem can be extended to systems with several loads acting.

21. In Fig. 3-34, assume the beam is weightless and has constant flexible rigidity EI. Use influence coefficients to determine the differential equations of motion.

From influence coefficient theory, the total deflections at positions 1, 2, and 3 are given by

$$x_1 = -m_1 \dot{x}_1 \alpha_{11} - m_2 \dot{x}_2 \alpha_{12} - m_3 \dot{x}_3 \alpha_{13} - c \dot{x}_2 \alpha_{12}$$

$$x_2 = -m_1 \dot{x}_1 \alpha_{21} - m_2 \dot{x}_2 \alpha_{22} - m_3 \dot{x}_3 \alpha_{23} - c \dot{x}_2 \alpha_{22}$$

$$x_3 = -m_1 \dot{x}_1 \alpha_{31} - m_2 \dot{x}_2 \alpha_{32} - m_3 \dot{x}_3 \alpha_{33} - c \dot{x}_2 \alpha_{32}$$

From Strength of Materials,

$$\alpha_{11} = \frac{9L^3}{12EI}, \qquad \alpha_{21} = \frac{11L^3}{12EI}, \qquad \alpha_{22} = \frac{16L^3}{12EI}$$

and from the symmetry of the system

$$\alpha_{33} = \alpha_{11} = \frac{9L^3}{12EI}, \qquad \alpha_{32} = \alpha_{12} = \frac{11L^3}{12EI}, \qquad \alpha_{13} = \alpha_{31} = \frac{7L^3}{12EI}$$

Fig. 3-35

Finally, by Maxwell's reciprocal theorem, $\alpha_{12}=\alpha_{21}$ and $\alpha_{23}=\alpha_{32}$. Thus the equations of motion take the following final form:

$$(9m_1\ddot{x}_1 + 11m_2\ddot{x}_2 + 11c\dot{x}_2 + 7m_3\ddot{x}_3)(L^3/12EI) + x_1 = 0$$

$$(16m_2\ddot{x}_2 + 16c\dot{x}_2 + 11m_3\ddot{x}_3 + 11m_1\ddot{x}_1)(L^3/12EI) + x_2 = 0$$

$$(9m_3\ddot{x}_3 + 7m_1\ddot{x}_1 + 11m_2\ddot{x}_2 + 11c\dot{x}_2)(L^3/12EI) + x_3 = 0$$

MATRIX ITERATION

22. Use matrix iteration to determine the natural frequencies of the system shown in Fig. 3-36.

From influence coefficient theory, the equation of motion can be written as

$$\begin{array}{rcl}
-x_1 &=& \alpha_{11}4m \, \ddot{x}_1 \, + \, \alpha_{12}2m \, \ddot{x}_2 \, + \, \alpha_{13}m \, \ddot{x}_3 \\
-x_2 &=& \alpha_{21}4m \, \ddot{x}_1 \, + \, \alpha_{22}2m \, \ddot{x}_2 \, + \, \alpha_{23}m \, \ddot{x}_3 \\
-x_3 &=& \alpha_{31}4m \, \ddot{x}_1 \, + \, \alpha_{32}2m \, \ddot{x}_2 \, + \, \alpha_{33}m \, \ddot{x}_3
\end{array}$$

When x_i is replaced by $-\omega^2 x_i$, the equations take the form

$$x_1 = 4\alpha_{11}mx_1\omega^2 + 2\alpha_{12}mx_2\omega^2 + \alpha_{13}mx_3\omega^2$$

$$x_2 = 4\alpha_{21}mx_1\omega^2 + 2\alpha_{22}mx_2\omega^2 + \alpha_{23}mx_3\omega^2$$

$$x_3 = 4\alpha_{31}mx_1\omega^2 + 2\alpha_{32}mx_2\omega^2 + \alpha_{33}mx_3\omega^2$$

In matrix notation, this becomes

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4\alpha_{11} & 2\alpha_{12} & \alpha_{13} \\ 4\alpha_{21} & 2\alpha_{22} & \alpha_{23} \\ 4\alpha_{31} & 2\alpha_{32} & \alpha_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

The values for the influence coefficients were found in Problem 16, Page 88, to be

$$\begin{array}{c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

Fig. 3-36

$$\alpha_{11} = \alpha_{12} = \alpha_{21} = \alpha_{13} = \alpha_{31} = 1/3k, \qquad \alpha_{22} = \alpha_{32} = \alpha_{23} = 4/3k, \qquad \alpha_{33} = 7/3k$$

When these values are substituted into the matrix equation, we obtain

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{\omega^2 m}{3k} \\ 4 & 8 & 4 \\ 4 & 8 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

To start the iteration process, estimate the configuration of the first mode. Let $x_1 = 1$, $x_2 = 2$, $x_3 = 4$.

First iteration:

$$\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 4 & 2 & 1 \\ 4 & 8 & 4 \\ 4 & 8 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 12 \\ 36 \\ 48 \end{bmatrix} = \frac{\omega^2 m}{3k} (12) \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

Second iteration:

$$\begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 4 & 2 & 1 \\ 4 & 8 & 4 \\ 4 & 8 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 14.0 \\ 44.0 \\ 56.0 \end{bmatrix} = \frac{\omega^2 m}{3k} (14) \begin{bmatrix} 1.0 \\ 3.2 \\ 4.0 \end{bmatrix}$$

Third iteration:

$$\begin{bmatrix} 1 \\ 3.2 \\ 4 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 4 & 2 & 1 \\ 4 & 8 & 4 \\ 4 & 8 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 3.2 \\ 4 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 14.4 \\ 45.6 \\ 57.6 \end{bmatrix} = \frac{\omega^2 m}{3k} (14.4) \begin{bmatrix} 1.00 \\ 3.18 \\ 4.00 \end{bmatrix}$$

Since the ratio obtained here is very close to the initial value,

$$\begin{bmatrix} 1.0 \\ 3.2 \\ 4.0 \end{bmatrix} = \frac{14.4m\omega^2}{3k} \begin{bmatrix} 1.00 \\ 3.18 \\ 4.00 \end{bmatrix} \quad \text{or} \quad 1 = (14.4m\omega^2)/3k \quad \text{and} \quad \omega_1 = 0.46\sqrt{k/m} \text{ rad/sec}$$

To obtain the second principal mode, the orthogonality principle is used:

$$m_1 A_1 A_2 + m_2 B_1 B_2 + m_3 C_1 C_2 = 0$$

For the first and second mode, this becomes

$$4m(1)A_2 + 2m(3.2)B_2 + m(4)C_2 = 0$$

$$A_2 = -1.6B_2 - C_2, B_2 = B_2, C_2 = C_2$$

and in matrix form

$$\begin{bmatrix} A_2 \\ B_2 \\ C_2 \end{bmatrix} = \begin{bmatrix} 0 & -1.6 & -1.0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_2 \\ B_2 \\ C_2 \end{bmatrix}$$

When this is combined with the matrix equation for first mode, it will converge to second mode

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 4 & 2 & 1 \\ 4 & 8 & 4 \\ 4 & 8 & 7 \end{bmatrix} \begin{bmatrix} 0 & -1.6 & -1.0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 0 & -4.4 & -3 \\ 0 & 1.6 & 0 \\ 0 & 1.6 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Due to symmetry of the problem, the second mode is $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$. When this is used to start the i

$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 0 & -4.4 & -3 \\ 0 & 1.6 & 0 \\ 0 & 1.6 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 3 \\ 0 \\ -3 \end{bmatrix}$$

which repeats itself. Hence

$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \frac{3m\omega^2}{3k} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \quad \text{or} \quad 1 = (\omega^2 m)/k \quad \text{and} \quad \omega_2 = \sqrt{k/m} \text{ rad/sec}$$

To obtain the third mode, write the orthogonality principle as

$$m_1 A_2 A_3 + m_2 B_2 B_3 + m_3 C_2 C_3 = 0$$

 $m_1 A_1 A_3 + m_2 B_1 B_3 + m_3 C_1 C_3 = 0$

Substituting $A_1 = 1.0$, $B_1 = 3.2$, $C_1 = 4.0$, $A_2 = 1$, $B_2 = 0$, and $C_2 = -1$, into the orthogonality equive obtain

$$4m(1)A_3 + 2m(0)B_3 + m(-1)C_3 = 0$$

$$4m(1)A_3 + 2m(3.20)B_3 + m(4)C_3 = 0$$

from which $A_3 = 0.25C_3$ and $B_3 = -0.78C_3$. Then

$$\begin{bmatrix} A_3 \\ B_3 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0.25 \\ 0 & 0 & -0.78 \\ 0 & 0 & 1.00 \end{bmatrix} \begin{bmatrix} A_3 \\ B_3 \\ C_3 \end{bmatrix}$$

and when this is combined with the matrix equation for the second mode, it will yield the third

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 0 & -4.4 & -3 \\ 0 & 1.6 & 0 \\ 0 & 1.6 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0.25 \\ 0 & 0 & -.78 \\ 0 & 0 & 1.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{3k} \begin{bmatrix} 0 & 0 & 0.43 \\ 0 & 0 & -1.25 \\ 0 & 0 & 1.75 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

or

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{3k} (1.75) \begin{bmatrix} 0 & 0 & 0.25 \\ 0 & 0 & -.72 \\ 0 & 0 & 1.00 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Assuming any arbitrary values for the third mode, it can be shown that the same third mode will be found. Further iteration is therefore not necessary. Thus

$$1 = (\omega^2 m/3k)(1.75)$$
 or $\omega_3 = 1.32\sqrt{k/m} \text{ rad/sec}$

Use matrix iteration to determine the natural frequencies of the triple pendulushown in Fig. 3-37 below.

From influence coefficient theory, the equations of motion are given by

$$-x_1 = \alpha_{11}m_1\ddot{x}_1 + \alpha_{12}m_2\ddot{x}_2 + \alpha_{13}m_3\ddot{x}_3$$

$$-x_2 = \alpha_{21}m_1\ddot{x}_1 + \alpha_{22}m_2\ddot{x}_2 + \alpha_{23}m_3\ddot{x}_3$$

$$-x_3 = \alpha_{31}m_1\ddot{x}_1 + \alpha_{32}m_2\ddot{x}_2 + \alpha_{33}m_3\ddot{x}_3$$

Replacing x_i by $-\omega^2 x_i$, the equations take the form

$$\begin{array}{rcl} x_1 &=& \alpha_{11} m_1 x_1 \omega^2 \, + \, \alpha_{12} m_2 x_2 \omega^2 \, + \, \alpha_{13} m_3 x_3 \omega^2 \\ x_2 &=& \alpha_{21} m_1 x_1 \omega^2 \, + \, \alpha_{22} m_2 x_2 \omega^2 \, + \, \alpha_{23} m_3 x_3 \omega^2 \\ x_3 &=& \alpha_{31} m_1 x_1 \omega^2 \, + \, \alpha_{32} m_2 x_2 \omega^2 \, + \, \alpha_{33} m_3 x_3 \omega^2 \end{array}$$

To obtain numerical values for the influence coefficients, put $L_1 = L_2 = L_3 = L$ and $m_1 = m_2 = m_3 = m$ in Problem 17, Page 89:

$$\alpha_{11} = \alpha_{12} = \alpha_{13} = L/3mg$$
 $\alpha_{21} = L/3mg, \quad \alpha_{22} = \alpha_{23} = 5L/6mg$
 $\alpha_{31} = L/3mg, \quad \alpha_{32} = 5L/6mg, \quad \alpha_{33} = 11L/6mg$

Fig. 3-37

In matrix notation, then, the equations become

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 5 & 5 \\ 2 & 5 & 11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Begin the iteration process by an arbitrary assumption for the first mode of the system.

First iteration:

$$\begin{bmatrix} 0.2 \\ 0.6 \\ 1.0 \end{bmatrix} = \frac{L\omega^2}{6g'} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 5 & 5 \\ 2 & 5 & 11 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.6 \\ 1.0 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} 3.6 \\ 8.4 \\ 14.4 \end{bmatrix} = \frac{L\omega^2}{6g} (14.4) \begin{bmatrix} 0.25 \\ 0.58 \\ 1.00 \end{bmatrix}$$

Second iteration:

Called Last 130 in

$$\begin{bmatrix} 0.25 \\ 0.58 \\ 1.00 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 5 & 5 \\ 2 & 5 & 11 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.58 \\ 1.00 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} 3.66 \\ 8.42 \\ 14.4 \end{bmatrix} = \frac{L\omega^2}{6g} (14.4) \begin{bmatrix} 0.25 \\ 0.58 \\ 1.00 \end{bmatrix}$$

Since the column repeats itself, the iteration process can be stopped. Then

$$1 = \frac{L\omega^2}{6\pi}$$
 (14.4) or $\omega_1 = 0.65\sqrt{g/L}$ rad/sec

To obtain the second mode, the first mode has to be suppressed during the iteration process. This is done by the use of the orthogonality principle:

$$m_1 A_1 A_2 + m_2 B_1 B_2 + m_3 C_1 C_2 = 0$$

Substituting the first mode into the above equation, we obtain

$$m(0.25)x_1 + m(0.58)x_2 + m(1.0)x_3 = 0$$
 for $x_1 = -2.32x_2 - 4x_3$, $x_2 = x_2$, $x_3 = x_3$ and in matrix form, this becomes

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & -2.32 & -4.0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

When this is combined with the fundamental matrix equation, it will yield a matrix equation that has no first mode present:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \underbrace{\frac{L\omega^2}{6g}} \begin{bmatrix} 2 & 2 & 2 \\ 2 & 5 & 5 \\ 2 & 5 & 11 \end{bmatrix} \begin{bmatrix} 0 & -2.3 & -4 \\ 0 & 1.0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \underbrace{\frac{L\omega^2}{6g}} \begin{bmatrix} 0 & -2.6 & -6 \\ 0 & 0.4 & -3 \\ 0 & 0.4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

From this matrix equation, use matrix iteration to determine the second mode.

First iteration:

$$\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} 0 & -2.6 & -6 \\ 0 & 0.4 & -3 \\ 0 & 0.4 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} -3.4 \\ -3.4 \\ 2.6 \end{bmatrix} = \frac{L\omega^2}{6g} (2.6) \begin{bmatrix} -1.3 \\ -1.3 \\ 1.0 \end{bmatrix}$$

Second iteration:

$$\begin{bmatrix} -1.3 \\ -1.3 \\ 1.0 \end{bmatrix} = \begin{bmatrix} L\omega^2 \\ 6g \end{bmatrix} \begin{bmatrix} 0 & -2.6 & -6 \\ 0 & 0.4 & -3 \\ 0 & 0.4 & 3 \end{bmatrix} \begin{bmatrix} -1.3 \\ -1.3 \\ 1.0 \end{bmatrix} = \begin{bmatrix} L\omega^2 \\ 6g \end{bmatrix} \begin{bmatrix} -2.6 \\ -3.5 \\ 2.5 \end{bmatrix} = \begin{bmatrix} L\omega^2 \\ 6g \end{bmatrix} (2.5) \begin{bmatrix} -1.05 \\ -1.40 \\ 1.00 \end{bmatrix}$$

Third iteration:

$$\begin{bmatrix} -1.0 \\ -1.4 \\ 1.0 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} 0 & -2.6 & -6 \\ 0 & 0.4 & -3 \\ 0 & 0.4 & 3 \end{bmatrix} \begin{bmatrix} -1.0 \\ -1.4 \\ 1.0 \end{bmatrix} = \frac{L\omega^2}{6g} \begin{bmatrix} -2.4 \\ -3.5 \\ 2.5 \end{bmatrix} = \frac{L\omega^2}{6g} (2.5) \begin{bmatrix} -1.0 \\ -1.4 \\ 1.0 \end{bmatrix}$$

Since the assumed mode in the last iteration repeats itself, the iteration process can be stoppe mode of vibration and the natural frequency are therefore given by

$$\begin{bmatrix} -1.0 \\ -1.4 \\ 1.0 \end{bmatrix}$$
 and $1=\frac{L\omega^2}{6g}$ (2.5) or $\omega_2=1.52\sqrt{g/L}$ rad/sec

In order to obtain the third principal mode and thus the third natural frequency of the both the first and second modes must not appear in the iteration process. This is again done b the orthogonality principle expressed as

$$m_1A_1A_3 + m_2B_1B_3 + m_3C_1C_3 = 0$$
, $m_1A_2A_3 + m_2B_2B_3 + m_3C_2C_3 = 0$

For first and third modes, this becomes

$$m(0.25)x_1 + m(0.6)x_2 + m(1.0)x_3 = 0$$

and for second and third modes, we have

$$m(-1.0)x_1 + m(-1.4)x_2 + m(1.0)x_3 = 0$$
 or $x_1 = 8x_3$, $x_2 = -5x_3$, $x_3 = -5x_3$

and in matrix form,

we have
$$x_1 = 8x_3, \quad x_2 = -5x_3, \quad x_3 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 8 \\ 0 & 0 & -5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

When this is combined with the matrix equation for second mode, we obtain the matrix equal third mode:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \underbrace{\frac{L\omega^2}{6g}} \begin{bmatrix} 0 & -2.6 & -6 \\ 0 & 0.4 & -3 \\ 0 & 0.4 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 8 \\ 0 & 0 & -5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \underbrace{\frac{L\omega^2}{6g}} \begin{bmatrix} 0 & 0 & 7 \\ 0 & 0 & -5 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Assume any convenient value for the third mode, and start the iteration process. It will be that the same mode shape $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$ is obtained repeatedly. This means that $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$ is actually the

mode of the system. Thus

$$1 = L\omega^2/6g$$
 and $\omega_3 = 2.45\sqrt{g/L}$ rad/sec

The three natural frequencies of the triple pendulum are therefore given by

$$\omega_1 = 0.65 \sqrt{g/L}, \quad \omega_2 = 1.52 \sqrt{g/L}, \quad \omega_3 = 2.45 \sqrt{g/L} \text{ rad/sec}$$

I. Determine the highest natural frequency of the three-degree-of-freedom sprin system as shown in Fig. 3-38 below. Use the inverse matrix method.

As discussed earlier, the deflection equations of the masses are

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{2k} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

I. Determine the highest natural frequency of the three-degree-of-freedom sprin system as shown in Fig. 3-38 below. Use the inverse matrix method.

As discussed earlier, the deflection equations of the masses are

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{2k} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Using inverse matrix theory, this can be written as

$$\frac{2k}{\omega^2 m} \begin{bmatrix} x_1 \\ x_2 \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
-1
is the inverse of matrix $[D] = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}$.

From matrix theory, Adjoint [D] can be found in the following manner:

Adjoint
$$[D]$$
 =
$$\begin{bmatrix} (-1)^{1+1} \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} & (-1)^{1+2} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} & (-1)^{1+3} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} \end{vmatrix} \\ (-1)^{2+1} \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} & (-1)^{2+2} \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} & (-1)^{2+3} \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} \\ (-1)^{3+1} \begin{vmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} & (-1)^{3+2} \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix} & (-1)^{3+3} \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{vmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}$$

Hence

and

$$[D]^{-1} = \frac{\text{Adjoint } [D]}{|D|} = \frac{1}{2} \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

The inverse matrix $[D]^{-1}$ can also be found by the elementary operations as follow:

Operation	1000	[D]	-15 SERVE		$[D]^{-1}$	
Multiply $[D]$ by a factor of 2	1	1/2	1/2	1	0	0
	1/2	1	1/2	0	1	0
	1/2	1/2	1	0	0	1
Row (1) minus row (2)	2	1	1	2	0	0
	1	2	1	0	2	0
	1	1	2	0	0	2
Row (3) minus row (2)	1	-1	0	2	2	0
	1	2	1	0	2	0
	1	1	2	0	0	2
Row (2) minus row (3)	1	-1	1	2	2	0
	1	2	1	0	-2	0
	0	-1	1	20	-2	2
Row (2) minus row (1)	. 1 1 0	-1 3 -1	0 0 1	2 0 0	$ \begin{array}{r} -2 \\ 4 \\ -2 \end{array} $	0 -2 2
Multiply row (2) by a factor of 1/4	1	-1	0	2	-2	0
	0	4	0	-2	6	-2
	0	-1	1	0	-2	2
Add row (2) to row (1)	1 0 0	-1 1 -1	0 0 1	$-\frac{2}{1/2}$	$ \begin{array}{r} -2 \\ 3/2 \\ -2 \end{array} $	$0 \\ -1/2 \\ 2$
Add row (2) to row (3)	1 0 0	0 1 -1	0 0 1	3/2 -1/2 0	-1/2 3/2 -2	$-1/2 \\ -1/2 \\ 2$
	1 0 0	0 1 0	0 0 1	3/2 $-1/2$ $-1/2$	-1/2 $3/2$ $-1/2$	-1/2 $-1/2$ $3/2$

Fig. 3-38

which also gives
$$[D]^{-1} = \frac{1}{2} \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

Substituting $[D]^{-1}$ into equation (1), we have

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{2k}{\omega^2 m} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Assume the third mode to be $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ and substitute this into equation (2) to obtain

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \frac{k}{\omega^2 m} \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \frac{4k}{\omega^2 m} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

The assumed mode $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$ repeats itself. This means the assumed value is the third mode. Hence $1 = 4k/\omega^2 m$ and $\omega_3 = 2\sqrt{k/m}$ rad/sec

25. Use the Inverse Matrix method to determine the highest natural frequency of spring-mass system as shown in Fig. 3-39.

Fig. 3-39

From influence coefficient theory the equations of motion can be expressed as

$$-x_1 = \alpha_{11}m \ddot{x}_1 + \alpha_{12}2m \ddot{x}_2 + \alpha_{13}3m \ddot{x}_3$$

$$-x_2 = \alpha_{21}m \ddot{x}_1 + \alpha_{22}2m \ddot{x}_2 + \alpha_{23}3m \ddot{x}_3$$

$$-x_3 = \alpha_{31}m \ddot{x}_1 + \alpha_{32}2m \ddot{x}_2 + \alpha_{33}3m \ddot{x}_3$$

where $\alpha_{11} = \alpha_{12} = \alpha_{13} = 1/3k$; $\alpha_{21} = 1/3k$, $\alpha_{22} = \alpha_{23} = 5/6k$; $\alpha_{31} = 1/3k$, $\alpha_{32} = 5/6k$, $\alpha_{33} = 11$. Replacing x_i by $-\omega^2 x_i$, we have

$$\begin{array}{rcl} x_1 &=& \alpha_{11} m x_1 \omega^2 \,+\, 2\alpha_{12} m x_2 \omega^2 \,+\, 3\alpha_{13} m x_3 \omega^2 \\ x_2 &=& \alpha_{21} m x_1 \omega^2 \,+\, 2\alpha_{22} m x_2 \omega^2 \,+\, 3\alpha_{23} m x_3 \omega^2 \\ x_3 &=& \alpha_{31} m x_1 \omega^2 \,+\, 2\alpha_{32} m x_2 \omega^2 \,+\, 3\alpha_{33} m x_3 \omega^2 \end{array}$$

or in matrix notation,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{\omega^2 m}{6k} \begin{bmatrix} 2 & 4 & 6 \\ 2 & 10 & 15 \\ 2 & 10 & 33 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Using inverse matrix theory, equation (2) can be written as

$$\frac{6k}{\omega^2 m} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 2 & 4 & 6 \\ 2 & 10 & 15 \\ 2 & 10 & 33 \end{bmatrix}^{-1} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

where
$$[D]^{-1} = \begin{bmatrix} 2 & 4 & 6 \\ 2 & 10 & 15 \\ 2 & 10 & 33 \end{bmatrix}^{-1}$$
 is the inverse of $[D] = \begin{bmatrix} 2 & 4 & 6 \\ 2 & 10 & 15 \\ 2 & 10 & 33 \end{bmatrix}$

(4)

Substituting
$$[D]^{-1} = \frac{1}{6} \begin{bmatrix} 5 & -2 & 0 \\ -1 & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
 into (3),

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 5 & -2 & 0 \\ -1 & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Assume the third mode to be $\begin{vmatrix} 10 \\ -4 \end{vmatrix}$ and begin the iteration process with equation (4).

First iteration:

rst iteration:
$$\begin{bmatrix} 10 \\ -4 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 5 & -2 & 0 \\ -1 & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{3} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} 10 \\ -4 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 58 \\ -16.5 \\ 1.7 \end{bmatrix} = \frac{k}{m\omega^2} (1.7) \begin{bmatrix} 34 \\ -9.7 \\ 1.0 \end{bmatrix}$$

Second iteration:

econd iteration:
$$\begin{bmatrix} 30 \\ -10 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 5 & -2 & 0 \\ -1 & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 30 \\ -10 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 170 \\ -45.5 \\ 3.7 \end{bmatrix} = \frac{k}{m\omega^2} (3.7) \begin{bmatrix} 46 \\ -12.3 \\ 1 \end{bmatrix}$$

Third iteration:

hird iteration:
$$\begin{bmatrix} 45 \\ -11 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 5 & -2 & 0 \\ -1 & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 45 \\ -11 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 247 \\ -62 \\ 4 \end{bmatrix} = \frac{k}{m\omega^2} (4) \begin{bmatrix} 61 \\ -15 \\ 1 \end{bmatrix}$$

Fourth iteration:

ourth iteration:
$$\begin{bmatrix} 60 \\ -15 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 5 & -2 & 0 \\ -1 & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 60 \\ -15 \\ 1 \end{bmatrix} = \frac{k}{m\omega^2} \begin{bmatrix} 330 \\ -83 \\ 5.4 \end{bmatrix} = \frac{k}{m\omega^2} (5.4) \begin{bmatrix} 60.7 \\ -15.3 \\ 1 \end{bmatrix}$$

The assumed column approximately repeats itself; this means the assumed value is correct. Hence

$$1 = \frac{k}{m\omega^2}$$
 (5.4) and $\omega_3 = 2.36\sqrt{k/m}$ rad/sec

THE STODOLA METHOD

26. Use the Stodola method to find the fundamental mode of vibration and its natural frequency of the spring-mass system as shown in Fig. 3-40. $k_1 = k_2 = k_3 = 1$ lb/in, $m_1 = m_2 = m_3 = 1$ lb-sec²/in.

Assume that the system is vibrating at one of its principal modes with natural frequency ω and that the motion is periodic. Then the system is acted upon by inertia forces $-m_i \dot{x}_i$. Now

$$x_i = A_i \sin \omega t$$
 and $-m_i \dot{x}_i = \omega^2 m_i A_i$

The Stodola method may be set up in the following tabular form as follows: Assuming an arbitrary set of values for the fundamental principal mode, the inertia force acting on each mass is equal to the product of the assumed deflection and the square of the natural frequency as shown in row 2. The spring force in row 3 is equal to the total inertia force acting on each spring. Row 4 is obtained by dividing row 3, term by term, by their respective spring constants. The calculated deflections in row 5 are found by adding the deflections due to the springs, with the mass near the

Fig. 3-40

fixed end having the least deflection and so on. The calculated deflections are then compared with the assumed deflections. This process is continued until the calculated deflections are proportional to the assumed deflections. When this is true the assumed deflections will represent the configuration of the fundamental principal mode of vibration of the system.

	<i>l</i> c ₁	m_1	k_2	m_2	k_3	m_3
 Assumed deflection Inertia force Spring force Spring deflection Calculated deflection 	3ω ² 3ω ²	$1 \\ \omega^2$ $3\omega^2$	$2\omega^2$ $2\omega^2$	1 ω ² 5ω ²	ω^2 ω^2	$\frac{1}{\omega^2}$ $6\omega^2$
		1		1.67	4.5	2
 Assumed deflection Inertia force Spring force Spring deflection Calculated deflection 	$4.67\omega^2$ $4.67\omega^2$	$\frac{1}{\omega^2}$	$3.67\omega^{2}$ $3.67\omega^{2}$	1.67 1.67 ω^2 8.34 ω^2	2ω² 2ω²	$\frac{2}{2\omega^2}$ $\frac{10.34\omega^2}{}$
		1		1.79		2.21
 Assumed deflection Inertia force Spring force Spring deflection Calculated deflection 	5ω² 5ω²	$1 \\ \omega^2$ $5\omega^2$	$4\omega^2$ $4\omega^2$	1.79 $1.79\omega^{2}$ $9\omega^{2}$	$2.21\omega^2$ $2.21\omega^2$	2.21 $2.21\omega^{2}$ $11.21\omega^{2}$
		1		1.8		2.24

The assumed deflection $\begin{bmatrix} 1.00 \\ 1.79 \\ 2.21 \end{bmatrix}$ at this point is very close to the calculated deflection. Hence the

fundamental principal mode of vibration is given by

and the fundamental natural frequency is found from $1.00+1.80+2.24~=~(5+9+11.21)\omega^2~~\text{or}~~\omega_1~=~0.44~\text{rad/s}$

27. Use the Stodola method to determine the lowest natural frequency of the four-degree of-freedom spring-mass system as shown in Fig. 3-41.

Fig. 3-41

SEVERAL DEGREES OF FREEDOM

CHAP. 3

See Problem 26 for explanation and procedure.

	$k_1 = 4k$	$m_1 = m$	$k_2 = 3k$	$m_2 = 2m$	$k_3=2k$	$m_3 = 3m$	$k_4 = k$	$m_4 = 4m$
Assumed deflection Inertia force Spring force Spring deflection Calculated deflection	20ω² 5ω²	4.00 $4\omega^2$ $5\omega^2$	$16\omega^2$ $5.3\omega^2$	3.00 $6\omega^{2}$ $10.3\omega^{2}$	$10\omega^2$ $5\omega^2$	2.00 $6\omega^{2}$ $15.3\omega^{2}$	4ω² 4ω²	$\frac{1.00}{4\omega^2}$ $\frac{19.3\omega^2}{}$
Assumed deflection Inertia force Spring force Spring deflection Calculated deflection	$30\omega^2$ $7.5\omega^2$	1.00 ω^2 7.5 ω^2	29ω² 9.7ω²	2.00 $4\omega^{2}$ $17.2\omega^{2}$	$25\omega^2$ $12.5\omega^2$	3.00 $9\omega^2$ $29.7\omega^2$	$16\omega^2$ $16\omega^2$	4.00 $16\omega^2$ $45.7\omega^2$
Assumed deflection Inertia force Spring force Spring deflection Calculated deflection	$41\omega^2$ $10.25\omega^2$	1.00 ω^2 10.25 ω^2	$40\omega^2$ $13.3\omega^2$	$2.00.$ $4\omega^{2}$ $23.55\omega^{2}$	$36\omega^2$ $18\omega^2$	4.00 $12\omega^{2}$ $41.55\omega^{2}$	$24\omega^2 \ 24\omega^2$	6.00 $24\omega^{2}$ $65.55\omega^{2}$
Assumed deflection Inertia force Spring force Spring deflection Calculated deflection	$43\omega^2$ $10.75\omega^2$	$\begin{array}{c} 1.00\\ \omega^2 \end{array}$ $10.75\omega^2$	$42\omega^2 \\ 14\omega^2$	2.2 $4.4\omega^{2}$ $24.75\omega^{2}$	$37.6\omega^2$ $18.8\omega^2$	4.00 $12\omega^{2}$ $43.55\omega^{2}$	$25.6\omega^{2}$ $25.6\omega^{2}$	6.4 $25.6\omega^{2}$ $69.15\omega^{2}$
		1.00		2.30		4.05		6.42

Therefore the first principal mode is given by $\begin{bmatrix} 1.00\\ 2.30\\ 4.05\\ 6.42 \end{bmatrix}$ and the lowest natural frequency is obtained from

and

 $(1+2.3+4.05+6.42) = (10.75+24.75+43.55+69.15)\omega^2$

or

 $13.77 = 148.2\omega^2$

Hence

100

 $\omega^2 = 0.093$

 $\omega_1 = 0.306\sqrt{k/m} \text{ rad/sec}$

28. Prove that the Stodola method will converge to the fundamental mode of vibration.

The Stodola method begins with assumed deflections for the fundamental mode of a system. The corresponding inertia forces due to these assumed deflections are calculated. Compared with actual inertia forces and deflections of the system, the inertia forces just found will produce a new set of deflections which is used to start the next iteration. The process is repeated. Eventually, this process will converge to the fundamental mode; the degree of accuracy depends on the number of iterations.

The general motion of an n-degree-of-freedom system is given by

$$x_{1} = A_{1} \sin (\omega_{1}t + \psi_{1}) + A_{2} \sin (\omega_{2}t + \psi_{2}) + \cdots + A_{n} \sin (\omega_{n}t + \psi_{n})$$

$$x_{2} = B_{1} \sin (\omega_{1}t + \psi_{1}) + B_{2} \sin (\omega_{2}t + \psi_{2}) + \cdots + B_{n} \sin (\omega_{n}t + \psi_{n})$$

$$x_{3} = C_{1} \sin (\omega_{1}t + \psi_{1}) + C_{2} \sin (\omega_{2}t + \psi_{2}) + \cdots + C_{n} \sin (\omega_{n}t + \psi_{n})$$
(1)

Let the assumed deflections be an arbitrary superposition of all the modes of the system, with constants a_1, a_2, \ldots, a_n ,

$$x_{1} = a_{1}A_{1} + a_{2}A_{2} + \cdots + a_{n}A_{n}$$

$$x_{2} = a_{1}B_{1} + a_{2}B_{2} + \cdots + a_{n}B_{n}$$

$$x_{3} = a_{1}C_{1} + a_{2}C_{2} + \cdots + a_{n}C_{n}$$
(2)

The corresponding inertia forces are

where m_1, m_2, \ldots, m_n are the masses of the system and ω is the natural frequency.

Now if the system is vibrating with all the principal modes present, the inertia forces and the corresponding deflections are

effections are
$$m_{1}(A_{1}\omega_{1}^{2} + A_{2}\omega_{2}^{2} + \cdots + A_{n}\omega_{n}^{2}), \quad (A_{1} + A_{2} + \cdots + A_{n})$$

$$m_{2}(B_{1}\omega_{1}^{2} + B_{2}\omega_{2}^{2} + \cdots + B_{n}\omega_{n}^{2}), \quad (B_{1} + B_{2} + \cdots + B_{n})$$

$$m_{3}(C_{1}\omega_{1}^{2} + C_{2}\omega_{2}^{2} + \cdots + C_{n}\omega_{n}^{2}), \quad (C_{1} + C_{2} + \cdots + C_{n})$$

$$(4)$$

Hence the inertia forces in (3) will produce a new set of deflections:

Now

$$x_{1} = \omega^{2}(a_{1}A_{1}/\omega_{1}^{2} + a_{2}A_{2}/\omega_{2}^{2} + \cdots + a_{n}A_{n}/\omega_{n}^{2})$$

$$x_{2} = \omega^{2}(a_{1}B_{1}/\omega_{1}^{2} + a_{2}B_{2}/\omega_{2}^{2} + \cdots + a_{n}B_{n}/\omega_{n}^{2})$$

$$x_{3} = \omega^{2}(a_{1}C_{1}/\omega_{1}^{2} + a_{2}C_{2}/\omega_{2}^{2} + \cdots + a_{n}C_{n}/\omega_{n}^{2})$$

$$(6)$$

Using the deflections in (6) as the assumed deflections, and carrying out exactly the steps in the last iteration, we have

$$x_{1} = \omega^{4}(a_{1}A_{1}/\omega_{1}^{4} + a_{2}A_{2}/\omega_{2}^{4} + \cdots + a_{n}A_{n}/\omega_{n}^{4})$$

$$x_{2} = \omega^{4}(a_{1}B_{1}/\omega_{1}^{4} + a_{2}B_{2}/\omega_{2}^{4} + \cdots + a_{n}B_{n}/\omega_{n}^{4})$$

$$x_{3} = \omega^{4}(a_{1}C_{1}/\omega_{1}^{4} + a_{2}C_{2}/\omega_{2}^{4} + \cdots + a_{n}C_{n}/\omega_{n}^{4})$$

$$(7)$$

After r iterations, the assumed deflections take the following general form:

ssumed deflections take the following
$$x_1 = \omega^{2r}(a_1A_1/\omega_1^{2r} + a_2A_2/\omega_2^{2r} + \cdots + a_nA_n/\omega_n^{2r})$$

 $x_2 = \omega^{2r}(a_1B_1/\omega_1^{2r} + a_2B_2/\omega_2^{2r} + \cdots + a_nB_n/\omega_n^{2r})$
 $x_3 = \omega^{2r}(a_1C_1/\omega_1^{2r} + a_2C_2/\omega_2^{2r} + \cdots + a_nC_n/\omega_n^{2r})$

$$\vdots$$
(3)

or

$$x_{1} = (a_{1}\omega^{2r}/\omega_{1}^{2r})(A_{1} + a_{2}A_{2}\omega_{1}^{2r}/a_{1}\omega_{2}^{2r} + \cdots + a_{n}A_{n}\omega_{1}^{2r}/a_{1}\omega_{n}^{2r})$$

$$x_{2} = (a_{1}\omega^{2r}/\omega_{1}^{2r})(B_{1} + a_{2}B_{2}\omega_{1}^{2r}/a_{1}\omega_{2}^{2r} + \cdots + a_{n}B_{n}\omega_{1}^{2r}/a_{1}\omega_{n}^{2r})$$

$$x_{3} = (a_{1}\omega^{2r}/\omega_{1}^{2r})(C_{1} + a_{2}C_{2}\omega_{1}^{2r}/a_{1}\omega_{2}^{2r} + \cdots + a_{n}C_{n}\omega_{1}^{2r}/a_{1}\omega_{n}^{2r})$$

$$(9)$$

As $\omega_1 < \omega_2 < \omega_3 < \cdots < \omega_n$, and as the number of iterations is sufficiently large or the value of r assumes a sufficient large number, the ratios of the natural frequencies become very small. In mos cases, less than ten iterations are required to obtain the fundamental mode of the system. Thus for sufficiently large numbers of iterations, the calculated deflections in (9) become

which approaches very closely the pure fundamental mode of vibration of the system.

Thus the Stodola method converges to the fundamental mode of vibration for an n-degree freedom system.

THE HOLZER METHOD

29. Use the Holzer method to determine the natural frequencies of the spring-mass system as shown in Fig. 3-42. Here $m_1 = m_2 = m_3 = 1$ lb-sec²/in.

Fig. 3-42

Begin the Holzer tabulation with the column of position, indicating the masses of the system. The second column is for the values of the different masses of the system; this information is given. The third column is the product of mass and frequency squared. Displacement comes next, and is obtained from the preceding row minus the total displacement at the end of the same row. Column five is just the product of columns three and four. The total inertia force is inserted in column six. It is equal to the sum of the total inertia force in the preceding row plus the inertia force on the same row. The rest are plainly evident.

An initial displacement, usually equal to unity for convenience, is assumed. If the assumed frequency happens to be one of the natural frequencies of the systems, the final total inertia force on the system should be zero. This is because the system is having free vibration. If the final total inertia force is not equal to zero, the amount indicates the discrepancy of the assumed frequency.

			ب Tab	le			8
Position	m_i	$m_{i}\omega^{2}$	x_i	$m_i x_i \omega^2$	$\sum_{1}^{i} m_i x_i \omega^2$	k_{ij}	$\sum_{1}^{i} m_{i} x_{i} \omega^{2} / k_{i}$
Assumed	frequency	, ω = 0.5	4-8				
1	1	0.25,	1	0.25	0.25	1	0.25
2	1	0.25	0.75	0.19	0.44	1	0.44
3	i	0.25	0.31	0.07	0.51		
Assumed	frequency	σ , $\omega = 0.75$					
1	1	0.56	1	0.56	0.56	1	0.56
2	1	0.56	0.44	0.24	0.80	1	0.80
3	1	0.56	-0.36	-0.2	0.60		
Assumed	frequency	$\gamma, \omega = 1.0$					×
				1	1	1	1
1	1	1	0	0	1	1	1
2	1 1	1	-1	-1	0		
	L	1 1					
Assumed	frequency	y, $\omega = 1.5$				1	
1	1	2.25	1.0	2.25	2.25	1	2.25
2	1	2.25	-1.25	-2.82	-0.57	1	-0.57
3	1.	2.25	-0.68	-1.53	-2.10		
Assumed	frequenc	$y, \omega = 1.79$					
. 1	1	3.21	1 1	3.21	3.21	1	3.21
2	1	3.21	-2.21	-7.08	-3.87	1	-3.87
3	1	3.21	1.66	5.34	1.47		1
Assumed	frequenc	y, $\omega = 2.0$					
1	1	4	1	4	4 .	1	4
2	1	4	-3	12	-8	1	-8
3	1	4	5	20	12		

Fig. 3-43

Therefore the natural frequencies are $\omega_1=0,\,\omega_2=1.0,\,\omega_3=1.7$ rad/sec.

'!!!!

m 2m 3m 4m

Fig. 3

30. Use the Holzer method to determine the natural frequencies of the four-mass system as shown in Fig. 3-44, if k=1 lb/in and m=1 lb-sec²/in.

See procedure given in Problem 29.

Table

Item	m	$m\omega^2$	x	$mx\omega^2$	$\sum mx\omega^2$	k *	$\sum mx\omega^2/k$
Assum	ed frequ	iency, $\omega = 0$.2			200	
1	4	.16	1	.16	.16	1	.16
2	3	.12	.84	.101	.261	2	.13
3.	2	.08	.71	.056	.317	3	.105
4	1	.04	.605	.025	.342	4	.0855
5	. &	σ σ	.5195			¥.	
Assun	ed frequ	$_{1}^{l}$ $_{1}^{l}$ $_{2}^{l}$ $_{3}^{l}$ $_{4}^{l}$ $_{5}^{l}$ $_{6}^{l}$ $_{7}^{l}$ $_{1}^{l}$ $_{1}^{l}$ $_{1}^{l}$ $_{2}^{l}$ $_{3}^{l}$ $_{4}^{l}$ $_{1}^{l}$ $_{2}^{l}$ $_{3}^{l}$ $_{1}^{l}$ $_{2}^{l}$ $_{3}^{l}$ $_{3}^{l}$ $_{4}^{l}$ $_{2}^{l}$ $_{3}^{l}$ $_{4}^{l}$ $_{2}^{l}$ $_{3}^{l}$ $_{3}^{l}$ $_{4}^{l}$ $_{2}^{l}$ $_{3}^{l}$ $_{3}^{l}$ $_{4}^{l}$).3				
1	4	.36	- 1	.36	.36	1	.36
2	3	.27	.64	.173	.533	2	.267
3	2	.18	.373	.067	.600	3	.200
4	1	.09	.173	.0155	.6155	4	.1539
5	8	.00 @	.0192				
Assun	ned freq	uency, ω =	0.4				(A. 1.)
1	4	.64	1	.64	.64	1	.64
2	3	.48	.36	.173	.813	2	.406
3	2	.32	046	0147	.798	3	.266
4	1	.16	312	049	.748	4	.187
5	00	.x0	499				
Assun	ned freq	uency, ω =	0.6		ri i	147. E 1	
	1 4	1.44	1	1.44	1.44	1	1.44
1 2	3	1.08	44	475	.965	2	.482
3	2	.72	922	664	.301	3	.100
4	1	.36	-1.023	368	067	4	017
5	∞	.00 .00	-1.006				
Assur	ned freq	uency, ω =	0.8			1.	
	4	2.56	1	2.56	2.56	1	2.56
1 2	3	1.92	-1.56	-3.00	44	2	22
3	2	1.92	-1.36 -1.34	-1.72	-2.16	3	73
	1	.64	-1.54 61	39	-2.55	4	64
4 5	00.	∞ .04	.03	.00	2.00		(2

Table (cont.)

Item	m	$m\omega^2$	x	$mx\omega^2$	$\sum mx\omega^2$	k	$\sum mx\omega^2/k$
Assum	ed freque	ency, $\omega = 1.0$	Total Victoria				
	T			4	4	1	4
1	4	4	1	-9	-5	2	-2.5
2	3	3	-3		-6	3	-2.0
3	2	. 2	5	-1	-4.5	4	-1.13
4	1	1	1.5	1.5	-4.5	-	2.20
5	. ∞		2.63			10 to 1	
Assun	ned frequ	ency, $\omega = 1.5$		1			
1	4	9	1	9	9	1	9
2	3	6.75	-8	-54	-45	2	-22.5
		4.5	14.5	65.3	20.3	3	6.77
3	2		7.73	17.4	37.7	4	9.43
4	1	2.25	- Marie Mari				
5	∞	∞	-1.70				
Assur	ned frequ	ency, $\omega = 1.8$					
-,	4	12.96	1	12.96	12.96	í	12.96
1	3	9.72	-11.96	-116.4	-103.44	2	-51.72
2			39.76	257.7	154.26	3	51.42
3	2	6.48	-11.66	-37.8	116.46	4	29.12
4	1	3.24					
5	∞ .	∞	-40.78	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Assu	med frequ	iency, $\omega = 2$.	0	N. Sag			10
.1	4	16	1	16	16	1	16
2	-3	12	-15	-180	-164	2	-82
3	2	8	67	536	372	3	124
4	1	4	-57	-228	144	4	36
5	∞	∞	-93				***Z_1 ***
		uency, $\omega = 2$.					Tred a great
Assu	med freq	uency, $\omega = 2$.	0				25
1	4	25	1	25	25	1	-212.5
2	3	18.75	-24	-450	-425	2	The second second second
3	2	12.5	188.5	2360	1935	3	645
4	1	6.25	-456.5	-2860	-925	4	-231
5	∞	∞	-225.5	Trible V. L.			
Assu	med freq	uency, $\omega = 3$.0				
1	4	36	1	36	36	1	36
2	3	27	-35	-945	-909	2	-455
	100	18	420	7560	6651	3	2220
3	2		-1800	-16,200	-9550	4	-2388
4	1	9		10,200			
5	. ∞	∞	588				

Plot the curve with the assumed frequencies against the amplitudes of the fixed end as shown in Fig. 3-45. The natural frequencies of the system are given by the intersections of the curve with the frequency axis. The natural frequencies are

 $\omega_1 = 0.30 \text{ rad/sec}$

 $\omega_2 = 0.81 \text{ rad/sec}$

 $\omega_3 = 1.45 \text{ rad/sec}$

 $\omega_4 = 2.83 \text{ rad/sec}$

Note: Curve is not drawn to scale.

BRANCHED SYSTEM

31. A four spring-mass branched system is shown in Fig. 3-46. If the masses are moving in the vertical direction only, derive the frequency equation of the system.

The equations of motion are given by $\Sigma F = ma$:

$$\begin{array}{lll} m_1 \overset{\centerdot}{x}_1 &=& -k_1 x_1 - k_2 (x_1 - x_2) \\ m_2 \overset{\centerdot}{x}_2 &=& -k_2 (x_2 - x_1) - k_3 (x_2 - x_3) - k_4 (x_2 - x_4) \\ m_3 \overset{\centerdot}{x}_3 &=& -k_3 (x_3 - x_2) \\ m_4 \overset{\centerdot}{x}_4 &=& -k_4 (x_4 - x_2) \end{array}$$

Rearranging,

$$m_{1}\ddot{x}_{1} + (k_{1} + k_{2})x_{1} - k_{2}x_{2} = 0$$

$$m_{2}\ddot{x}_{2} + (k_{2} + k_{3} + k_{4})x_{2} - k_{3}x_{3} - k_{4}x_{4} - k_{2}x_{1} = 0$$

$$m_{3}\ddot{x}_{3} + k_{3}x_{3} - k_{3}x_{2} = 0$$

$$m_{4}\ddot{x}_{4} + k_{4}x_{4} - k_{4}x_{2} = 0$$

Assume the motion is periodic and is composed of harmonic components of various amplitudes and frequencies. Let

$$x_1 = A\cos(\omega t + \psi), \qquad \ddot{x}_1 = -\omega^2 A\cos(\omega t + \psi)$$

$$x_2 = B\cos(\omega t + \psi), \qquad \ddot{x}_2 = -\omega^2 B\cos(\omega t + \psi)$$

$$x_3 = C\cos(\omega t + \psi), \qquad \ddot{x}_3 = -\omega^2 C\cos(\omega t + \psi)$$

$$x_4 = D\cos(\omega t + \psi), \qquad \ddot{x}_4 = -\omega^2 D\cos(\omega t + \psi)$$

When these relations are, substituted and the term $\cos{(\omega t + \psi)}$ cancelled out, the differential equations of motion become a set of algebraic equations:

$$\begin{array}{lll} (k_1+k_2-m_1\omega^2)A-k_2B&=&0\\ -k_2A+(k_2+k_3+k_4-m_2\omega^2)B-k_3C-k_4D&=&0\\ -k_3B+(k_3-m_3\omega^2)C&=&0\\ -k_4B+(k_4-m_4\omega^2)D&=&0 \end{array}$$

from which the frequency equation is obtained by setting the determinant of the coefficients A, B, C, D

$$\begin{vmatrix} (k_1 + k_2 - m_1 \omega^2) & -k_2 & 0 & 0 \\ -k_2 & (k_2 + k_3 + k_4 - m_2 \omega^2) & -k_3 & -k_4 \\ 0 & -k_3 & (k_3 - m_3 \omega^2) & 0 \\ 0 & -k_4 & 0 & (k_4 - m_4 \omega^2) \end{vmatrix} = 0$$

Expand the determinant and simplify to obtain

erminant and simplify to obtain
$$\omega^8 - \left[\frac{k_1 + k_2}{m_1} + \frac{k_2 + k_3 + k_4}{m_2} + \frac{k_3}{m_3} + \frac{k_4}{m_4}\right] \omega^6 + \left[\frac{k_1 k_2 + k_2 k_3 + k_3 k_1 + k_1 k_4 + k_2 k_4}{m_1 m_2} + \frac{k_2 k_3 + k_3 k_4}{m_2 m_3} + \frac{k_1 k_3 + k_2 k_3}{m_1 m_3} + \frac{k_2 k_4 + k_3 k_4}{m_2 m_4} + \frac{k_1 k_4 + k_2 k_4}{m_1 m_4} + \frac{k_3 k_4}{m_3 m_4}\right] \omega^4 - \left[\frac{k_1 k_2 k_3 + k_2 k_3 k_4 + k_3 k_4 k_1}{m_1 m_2 m_3} + \frac{k_2 k_3 k_4}{m_2 m_3 m_4} + \frac{(k_1 + k_2) k_3 k_4}{m_3 m_4 m_1} + \frac{k_4 (k_1 k_2 + k_2 k_3 + k_3 k_1)}{m_4 m_1 m_2}\right] \omega^2$$

Fig. 3-46

33. Use the Stodola method to determine the lowest natural frequency of the branched system as shown in Fig. 3-48.

Fig. 3-48
See Problem 26, Page 98, for an explanation of the Stodola method.

	$k_1 = 7k$	$m_1 = 4m$	$k_2 = 5k$	$m_2 = 3m$	$k_3 = 5k$	$m_3 =$
Assumed deflection		1		1		1
Inertia force		$4\omega^2$		$3\omega^2$		2ω
Spring force	$9\omega^2$		$3\omega^2$		$2\omega^2$	628 TO
Spring deflection	$1.3\omega^2$		$0.6\omega^2$		$0.4\omega^2$	
Calculated deflection	1.0	$1.3\omega^2$		$1.9\omega^2$		1.
		1		1.46		1.:
Assumed deflection		1		1.4		1.
Inertia force	Jan Sangara	$4\omega^2$		$4.2\omega^2$		2.6
Spring force	$10.8\omega^2$		$4.2\omega^2$		$2.6\omega^2$	
Spring deflection	$1.54\omega^2$		$0.84\omega^2$		$0.52\omega^2$	8,
Calculated deflection		$1.54\omega^2$		$2.38\omega^2$		2.0
		1		1.54		1.3
Assumed deflection		1		1.52		1.3
Inertia force		$4\omega^2$		$4.56\omega^2$	7	2.6
Spring force	$11.24\omega^2$		$4.56\omega^2$		$2.68\omega^2$	
Spring deflection	$1.61\omega^2$		$0.92\omega^{2}$		$0.53\omega^{2}$	725
Calculated deflection		$1.61\omega^2$		$2.53\omega^2$	2 - 4	2.1
The grant of the state of the		1	1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.56		1.3
Assumed deflection		1		1.56		1.3
Inertia force		$4\omega^2$		$4.68\omega^2$		2.6
Spring force	$11.32\omega^{2}$		$4.68\omega^2$	and the second	$2.64\omega^2$	
Spring deflection	$1.62\omega^2$		$0.93\omega^{2}$		$0.53\omega^{2}$	(E)
Calculated deflection		$1.62\omega^2$		$2.55\omega^2$		2.1
*		1		1.57		1.3

The assumed deflection $\begin{bmatrix} 1.00 \\ 1.56 \\ 1.32 \end{bmatrix}$ at this point is quite close to the calculated deflection. Hence the

fundamental principal mode of vibration is given by 1.57 and the lowest natural frequency is found from

$$(1+1.57+1.33) = (1.62+2.55+2.15)\omega^2$$
 or $\omega_1 = 0.79\sqrt{k/m} \text{ rad/sec}$

oranched

 $_{3}=12/35k;$

33. Use the Stodola method to determine the lowest natural frequency of the branched system as shown in Fig. 3-48.

Fig. 3-48

See Problem 26, Page 98, for an explanation of the Stodola method.

	$k_1 = 7k$	$m_1 = 4m$	$k_2 = 5k$	$m_2 = 3m$	$k_3 = 5k$	$m_3 =$
Assumed deflection		. 1		1		1
Inertia force		$4\omega^2$	***	$3\omega^2$		2ω
Spring force	$9\omega^2$		$3\omega^2$		$2\omega^2$	20 A
Spring deflection	$1.3\omega^2$		$0.6\omega^2$		$0.4\omega^2$	
Calculated deflection		$1.3\omega^2$		$1.9\omega^2$		1.7
	1,747	1 ,		1.46		1.3
Assumed deflection	1	1	1.0	1.4		1.3
Inertia force		$4\omega^2$		$4.2\omega^2$		2.6
Spring force	10.8ω2		$4.2\omega^2$		$2.6\omega^2$	
Spring deflection	$1.54\omega^2$		$0.84\omega^2$		$0.52\omega^{2}$	
Calculated deflection		$1.54\omega^2$		$2.38\omega^2$		2.0
		1		1.54		1.3
Assumed deflection		1		1.52		1.3
Inertia force	*	$4\omega^2$		$4.56\omega^2$		2.6
Spring force	$11.24\omega^2$		$4.56\omega^2$		$2.68\omega^{2}$	
Spring deflection	$1.61\omega^2$		$0.92\omega^{2}$		$0.53\omega^{2}$	=
Calculated deflection		1.61ω ²		$2.53\omega^2$		2.1
		1		1.56		1.3
Assumed deflection	2 1 2 7 7 2	1		1.56		1.3
Inertia force		$4\omega^2$		$4.68\omega^2$		2.6
Spring force	$11.32\omega^2$		$4.68\omega^2$	entre principal	$2.64\omega^2$	
Spring deflection	$1.62\omega^2$		$0.93\omega^{2}$	100	$0.53\omega^{2}$	
Calculated deflection		$1.62\omega^{2}$		$2.55\omega^2$		2.1
		1		1.57		1.3

us approxi-

The assumed deflection $\begin{bmatrix} 1.00 \\ 1.56 \\ 1.32 \end{bmatrix}$ at this point is quite close to the calculated deflection. Hence the

fundamental principal mode of vibration is given by $\begin{bmatrix} 1.00 \\ 1.57 \\ 1.33 \end{bmatrix}$ and the lowest natural frequency is found

$$(1+1.57+1.33) \ = \ (1.62+2.55+2.15)\omega^2 \qquad \text{ or } \qquad \omega_1 = \ 0.79\sqrt{k/m} \ \mathrm{rad/sec}$$

ched

THE MECHANICAL IMPEDANCE METHOD

34. Use the Mechanical Impedance method to find the frequency equation of the spring-mass system as shown in Fig. 3-49.

The mechanical impedances are k and $-m\omega^2$ for spring and mass.

For junction x_1 , this becomes

$$(6k+4k-6m\omega^2)x_1$$

where the slippage term is $4kx_2$. Since there is no force acting on junction x_1 , one equation will be obtained as

$$(6k + 4k - 6m\omega^2)x_1 - 4kx_2 = 0$$

Similarly, for junction x_2 the equation is

$$(4k + 2k - 4m\omega^2)x_2 - 4kx_1 - 2kx_3 = 0$$

where $4kx_1$ and $2kx_3$ are the slippage terms.

For junction x_3 , this is given by

$$(2k - 2m\omega^2)x_3 - 2kx_2 = 0$$

Rearrange the equations to get

$$(10k - 6m\omega^2)x_1 - 4kx_2 = 0$$

$$-4kx_1 + (6k - 4m\omega^2)x_2 - 2kx_3 = 0$$

$$-2kx_2 + (2k - 2m\omega^2)x_3 = 0$$

Hence the frequency equation is given by

$$\begin{vmatrix} (10k - 6m\omega^2) & -4k & 0 \\ -4k & (6k - 4m\omega^2) & -2k \\ 0 & -2k & (2k - 2m\omega^2) \end{vmatrix} = 0$$

Fig. 3-49

Fig. 3-50

Writing the impedance for junction x_1 and its amplitude, we obtain

$$(k_1 + ic_1\omega - m_1\omega^2 + k_2 + ic_2\omega)x_1$$

and the slippage terms for the junction x_1 are $k_2x_2 + ic_2\omega x_2$; hence the first equation is given by

$$(k_1 + k_2 + ic_1\omega + ic_2\omega - m_1\omega^2)x_1 - k_2x_2 - ic_2\omega x_2 = F_0$$

Similarly, the equations for junctions x_2 and x_3 are

$$\begin{array}{lll} (k_2+k_3+ic_2\omega+ic_3\omega-m_2\omega^2)x_2-k_2x_1-ic_2\omega x_1-k_3x_3-ic_3\omega x_3&=&0\\ (k_3+k_4+ic_3\omega+ic_4\omega-m_3\omega^2)x_3-k_3x_2-ic_3x_2\omega&=&0 \end{array}$$

Substituting the given values into the equations of motion, we get

$$\begin{array}{lll} (1+2i)x_1-(1+i)x_2&=F_0\\ -(1+i)x_1+(1+2i)x_2-(1+i)x_3&=&0\\ -(1+i)x_2+(1+2i)x_3&=&0 \end{array}$$

2m

2

31

 $3 \omega^2$

 $\frac{6\omega^2}{4}$

4 8ω²

 $\frac{4\omega^2}{2}$

 $\frac{2}{4\omega^2}$

 $\frac{5\omega^2}{3}$

e the

ound

Solving by Cramer's rule,

Expand the determinants to obtain

$$\begin{array}{lll} x_1 & = & \frac{F_0 \, (1 + 2i)(1 + 2i) \, - F_0 \, (1 + i)^2}{(1 + 2i)^3 \, - \, (1 + 2i)(1 + i)^2 \, - \, (1 + 2i)(1 + i)^2} \\ x_2 & = & \frac{F_0 \, (1 + i)(1 + 2i)}{(1 + 2i)^3 \, - \, (1 + 2i)(1 + i)^2 \, - \, (1 + 2i)(1 + i)^2} \\ x_3 & = & \cdot \frac{F_0 \, (1 + i)^2}{(1 + 2i)^3 \, - \, (1 + 2i)(1 + i)^2 \, - \, (1 + 2i)(1 + i)^2} \end{array}$$

The equation for x_1 simplifies to

$$x_1 = \frac{F_0(3-2i)}{(3+6i)} = \frac{13F_0}{(-3+24i)}$$

Therefore the numerical value of the amplitude of x_1 is

$$\frac{13F_0}{\sqrt{9+24^2}} = 0.54F_0$$
 and the phase angle $\phi = \tan^{-1}(24/-3) = -82.9^\circ$

Thus the steady state response of the mass m_1 is

$$x_1(t) = 0.54F_0 \cos(\omega t - 82.9^\circ)$$

Similar expressions can be found for masses m_2 and m_3 as

$$x_2(t) = 0.47F_0 \cos(\omega t - 45^\circ)$$

 $x_3(t) = 0.29F_0 \cos(\omega t - 26.7^\circ)$

THE ORTHOGONALITY PRINCIPLE

36. Show that the orthogonality principle holds for Problem 8, Page 80.

For three-degree-of-freedom systems, the orthogonality principle can be written as

$$m_1A_1A_2 + m_2B_1B_2 + m_3C_1C_2 = 0$$

$$m_1A_2A_3 + m_2B_2B_3 + m_3C_2C_3 = 0$$

$$m_1A_3A_1 + m_2B_3B_1 + m_3C_3C_1 = 0$$

where m's are the masses; A's, B's and C's are the amplitudes of vibration of the system.

The general motion of the problem is

$$\begin{array}{ll} x_1(t) &= \frac{1}{3} - \frac{1}{2}\sin{(t + \pi/2)} + \frac{1}{6}\sin{(\sqrt{3}\,t + \pi/2)} \\ x_2(t)^3 &= \frac{1}{3} - \frac{1}{3}\sin{(\sqrt{3}\,t + \pi/2)} \\ x_3(t) &= \frac{1}{3} + \frac{1}{2}\sin{(t + \pi/2)} + \frac{1}{6}\sin{(\sqrt{3}\,t + \pi/2)} \end{array}$$

Substituting the corresponding amplitudes of vibration into the equations for the principle of orthogonality, we obtain

$$\begin{array}{lll} m(\frac{1}{3})(-\frac{1}{2}) + m(\frac{1}{3})(0) + m(\frac{1}{3})(\frac{1}{2}) & = & 0 \\ m(-\frac{1}{2})(\frac{1}{6}) + m(0)(\frac{1}{3}) + m(\frac{1}{2})(\frac{1}{6}) & = & 0 \\ m(\frac{1}{6})(\frac{1}{3}) + m(-\frac{1}{3})(\frac{1}{3}) + m(\frac{1}{6})(\frac{1}{3}) & = & 0 \end{array}$$

Hence the orthogonality principle is completely satisfied.

Supplementary Problems

37. Derive the equations of motion of the system as shown in Fig. 3-51 below. The connecting rods are weightless and restrict motion to the plane of the paper.

Ans.
$$4m\ddot{\theta}_1 + 2k\theta_1 - k\theta_2 = 0$$

 $4m\ddot{\theta}_2 + 2k\theta_2 - k\theta_3 - k\theta_1 = 0$
 $4m\ddot{\theta}_3 + 2k\theta_3 - k\theta_2 = 0$

Fig. 3-51

Fig. 3-52

43. Ca

38. The circular homogeneous cylinder of total mass M and radius 2a is suspended by a spring of stiffness k_1 , and is free to rotate with respect to its center of mass O as shown in Fig. 3-52 above. Derive the equations of motion.

Ans.
$$3M\ddot{x}_1 + (k_1 + 9k_2)x_1 - 2M\ddot{x}_2 - 6k_2x_2 - 3k_2x_3 = 0$$

 $(2M + 2m)\ddot{x}_2 + 4k_2x_2 + 2k_2x_3 - 2M\ddot{x}_1 - 6k_2x_1 = 0$
 $m\ddot{x}_3 + k_2x_3 - 3k_2x_1 + 2k_2x_2 = 0$

 Calculate the natural frequencies of the system as shown in Fig. 3-53.

Ans.
$$\omega_1 = 0.39\sqrt{k/m}$$
, $\omega_2 = 1.47\sqrt{k/m}$, $\omega_3 = 2.36\sqrt{k/m}$ rad/sec

Fig. 3-53