INFLUENCE COEFFICIENTS

16. Determine the influence coef'ﬁ'cients of the rthvree-degrévef
as shown in Fig. 3-23 below. aaa ,

of-freedom spring-mass system

; % rea e ot :
fluence coefficient a;; is the deflection at the coordinate ¢ due to a unit force |
For a-three-degree-of-freedom System, there will be nine influence coefli-
31 Xg1> Agpy Apg,y Q31 Xyyy AN ay,. j :

From definition, in
applied at ‘coordinate 7,
cients. They are @y @y, @,

e ' oLt 4m as shown in
‘g uni is applied to mass .
Y ah umi’iri\'ogrzef stiffness 3k will stretch 1/3k, equal to
), the sp . T -
= 1/3k. e B 3
st ‘ ; f a 4m
8 s 4m deflects ayy = 1/3k .}mder the ac(;;lc‘::m:ard.
B es 2m and m will simply move do ‘
force, then matss. b i e g k :
oo il i3 i :
the same amount, ’ |
t,h; 'v ; g a2y — ‘181 - qll _. 1/3](;

Unit -
— : : =a 2 Force &
SR v 2m n orce £
: inei i a;;. - Hence agy 13 :
1 a rin Iple Qs i _
By Maxwell’s reciprocal princ Moy 2 Vo :

, and so _ ; ,__"._,. L A i "
azl. ayy = a1z T @13 T 091 231 13k $ §
m

T . i m hown in
ﬁnd Q99 apply a unit. force to mass 2m as g

ies, i i L
:3-23(b). - The two springs 3k and k. are in series, 'r}d their | -
.;;ralzerft .spring constant is given by o 3} /4 - - (
ke = U3+ 1k or ke = 3K/ o

; : = 4/3k.= ag; and as
. : F/ke, or 1/(3]€/4) =
Bass Th;agz'fslegr?omna;: 2m, ;32": agy. [ Now . agy = as; and hence
1ass m “Hliry ; &
; | g2, = *23 ToodgR ; il . : their equivalent§
i it force to mass m. The three SPINIBK are in perigy end ' :
~To find ag;, apply a unit { ;‘ S
o : is given by BRAr : = BhlT
R e stifnend e & ke = 13k +1/k+ 1k = 13k  or ke = 3k/
" ags = Flkw = 1/(3K/7) = 3k
i nce coefficients of the system are = gt
;The influe ' Cayy = 1/8k,  agg = .1/8k, . a3 = 1/3k

4/3]6, 023 4/3k
4/3]\5, ogy — 7/3k

Il
Il

oy : 1/3]6, oy

a31'_-——-‘1. 1/3k’ = 032

-



dulum of lengths Li, Ls, L3 and masses m;, M3, M3 a8
-shown 1n TFig. 3-24.

. Apply a unit horxzontal force to the mass m1 of the pen-
dulum as shown in Fig.3-25 below and write force equations
about mass my. Since m; is in equxhbrxum, |

T sin e, =1 % (1)
T cosg =. g(m1+m2+m3) i 2 (2)

Divide equation (1) by (2) to obtain .‘:,

Fig. 3-24

‘,tano' = 1/g(1nl+mz+m,3) e A vy

1 1b force S5 b

1 1b force

T
)
|

1 Ib force

Fig. 3-25 HLETFIR 328 s " BigAn

CHAP. 3] . SEVERAL DEGREES OF FREEDOM

For small angles of oscillation, tane = sineg; and from the configuration of the sys
sin ¢ = a;,/L4y. Xence TS L N CCE SR S

and «j; = as; — agz; from the geometry of the system.

When a unit horizontal force is applied to 725 as shown in Fig. 3-26 above, mass m; will ]
displaced a distance «;;, bu% 2., and mg will each be  displaced an addltlonal ‘distance equa]'t
L,/g(my + mgz). Therefore,

@15 = aqg and sy = agzs = ayy + Ls/g(ms+ myz)

Similarly, when a unit horizontal force is the only force acting on mass m3 as shown in- Fig. 3?.
above, mass ; will be simply displaced a distance a;;, and m, a distance [a;; + Ly/g(m, -+
“while mg3 will be displaced an additional distance equal to Lj/g3; then

ajz = aji, a3 = aso, azz = asz -+ Lg/gmg

Thus the influence coefficients are L-iven by

_ - £ Ly
@11 — <a12 — @®i13 .= Ty + ma + mg) ‘
e L, 3 5 _ L, Lo
e g(my + my + m3) SR oA g(my 4 mg 4 my) * g(mg + m3)
., : : % Lo
oL = g(my + mg +mgz) ’ ST gy + ma + m3) i g, +my)
s : Lix L,

£33 g(my + M +_'m,3) ol g(ms + 7n35 * g



18. Calculate the influence coefficients of the .three-degree-of-freedom spring-mass sSys of

as shown in Fig. 8-28, where all the masses are equal to 7 and all the springs equal to_

kau B K, k(an — azx) 1 kcx“ k("u - “:") k(a“ S a:")

z PRy
2
k(a,, — aj3y) Flayy — agy) : K(ay, —';::) ka,,r o
o ' ().t e, it
: Koy, — ay,) k(e — ay,) =
k(“u — aj,) kau i ka;x A- (o, — @a)
4 AR mas
; . k(“’za — o) Fe(otyy — a32) ka,,
] b) .
k(“'zo — ay3) Fag, Fe(ays — eyq) A K(azy — aaa)
E R
3 4
@ 3) k(az; — aj,) # kag,
(o)
Fig. 3-28 ‘ insc ; " Fig.3-29

Designate the masses as mgy, 7., and 3. Apply a one lb unit force to ;. From the free-
force diagrams, Fig. 3-29(a),

kay; + k(ay; — azy) + klag; —asy) = 1 . Bkay; — kasy — kagy = 1
k(ay; — asy) = I(agy — agy) + kas; or Bagy — agz; — ay; = O
k(ag; = azy) + k(agy — az)) = kagy 3ag; — ajy —ag; = O
hich gi
wate ERveR @y = 1/2k,  agy = 1/4k, . a3 = 174k
iy ! . CHAP.} &
SEVERAL'_-DEGREES OF FREEDOM . [ :

90
Similarly,'the followmg force equatlons w111 be obtamed when a unit force is applied to -massrzt,
as shown in Fig. 3-29(b) above: ks ; ,
k(a12 — ago) + Kays = k'(doz = ayo) !
Flagy — ¢y2) + Kagz - k(aqo -7 ag) = 1
k(azz = 032) + Klags- -“32) kaaz

3ajy —ap —ag = 0.
or Slagy — kagy — Kayg = 1
|  Bagy —agg —age = 0

from whic am = 1/4k

1/2k T ag,z = 1/4k _
above, we obtain

by
Klagg — agg) + Klags — axa) S e e
klazg — a13) T Kags = Klags ,"{123) g oL Ty o0g) ask."; mk by
. Klagz — a1a) + klags 70!23) + kaa's i 1 - t Bkagy — Kayg — Kagg

from which

And when' a unit force is apphed to mass M3 as shown in Flg 3- 29( c)
ka13 A e - Bagz — ag —

alg ._' 1/4k e = 1/4k, _??5 = v

The mﬂuence coef’ﬁcxents of the system are. then : MR N i
; Zdk ey = A SO

o "‘“_ii:? 1/2k S¥ S i it Hy

e :1(/.4k5, gy = 14k = 12K




19, Calculate the influence  coefficients of iia et
dynamic system consisting of three equal
masses attached to a taut string as shown "
in Fig, 3-80. it ra e i

The ten'shion T ‘in the stf.in"gi_’can be assumed -
to remain unchanged for small angles of oscilla- °
tion. a; is the deflection at position 1 due to a

unit force applied to position 1.

At the position shown in Fig. 3-31, the unit force is balanced by the tension forces ‘exertedb g

_the string. For small angles of oscillation this can be written as
. Sk . Fapngt (a'ﬁ/L)T i (au/SL)T =1
which gives ay; = 3L/4T. o ek : :
agl‘ and oy are the

- .They are given by =~ Gl R e : :
bk vaeg _?"%(ail) = L2T, ag = Ylay) = L/AT

deﬂéciidﬁs of,"i.theb mésses. m2 and m, due to a unit force applied to m

Y Unit Force - SRR L Unit Force

Fig. 881 Gt i o0 o0 Fig. 3-32
To determine agg, apply a unit‘;'forf:e to mass mg as shown in Fig.3-32. The forces acting
mass m, are the applied unit force and the tension forces; then ‘ : i

A (qzé/ZL)_T+ P = 17!

which gives agy = L/T, and ajp = e = LI 2T ;

By symmetry, aj =a33=.3L/4T; and by Maxwell's reciprocal theorem, ay = @z, a13'= o
ag3 = agp. Thus the influence coefficients of .the system are - : : i
| ay = 3LAT, = ayp = L/2T, deg = LAT
a9y =L/2T, e gy & L/T, T a9y = L/2T
ayy = L/4T, . ap = L/2T, azg = 3L/4T



20. Prove Maxwell’s reciprocal thecrem @ = VV‘ lw’

«; for the simply supported beam with = — .
two concentrated loads acting as shown - é > } 2 " é > ;
in Fig. 8-33. . ez Fig.3-33 7077

The four influence coefficients of the system are ayy, app, @aq, @ss. It is necessary to show tha"
ajs = aoy in order to prove Maxwell's reciprocal theorem. This can be done by applying the loads in§
two cycles. » '

For the first cycle, apply W, first and then W,. When W, is alone at position 1, the influence |
coefficients are a;;, as; and : ;

P.E, = 4W3ay ; . i
When W, is applied after W, is on, the admtlo&al energy of the system is %Wg age + Wy (Wsay,)
and the total energy is therefore W'l ay; + ‘,VV)mm + W, (Ws ais). _3

* For the second cycle, apply W, first and then W,. In a similar fashion, the total energy of the.
system is given by IW3as, + 1W2ay; + Wa (W) asy). ;

Since at the ends of both cycles of application of loads the same state prevails, the two energy:
expressions must be the same. Thus by equating the two energy expressions, we obtain ajp = gyl

It can be shown that the Maxwell’s reciprocal theorem can be extended to systems with several 4
loads acting.

2+-In Fig. 3-34, assume the beam is weigihtless and has constant flexible r1g1d1ty E‘] 19}
influence coefficients to deterrnme the dlfferentlal equations of motion.

L,

; Tm t
/ / 7 X

3 |
& g

T
23 77

Fig. 3-34
From influence coefficient theory, the total deflections at positions 1, 2, and 3 are given by
" Ly, &=, STy :";1'1‘11 — My -:5.20112 —4m3.‘£3°413 — eXyagy
X = My gx“h =2 ‘x‘zazz — Mg T3apy — cyazy
*3 = Ty 51031 — My Xyagy — my 5;3¢Y33 b 05320132
From Strength of Materials,
- 9L8 _ 1113 _ 1eLs3
= 57 %21 = T3E7 . %2 = pn7
and from the symmetry of the system i ’
' . _ors Nl gl o _ i
¢33z — oy = 12E1°’ © R E dyy = 12E1° @13 — ag; = 12E1

} |

o 11b s, @3] ; \r’m\;"zz b %az

Fig. 3-35

' 3
Finally, by Maxwell’s reciprocal theorem, a;5 = as; and asg = agp. Thus the equations of motion E
take the following final form:

(Om %) + 11my 2y + 1lexy + Trag %) (L3/12ET) + 2, = 0
(16mg Ty + 16¢Ey + 1lmg 25 + 1lmy 2,)(L3/12EI) + 2z, = 0
(Omg @y + Ty By + 1lmy ¥y + 1leay)(LA/12EI) + 25 = 0



92
MATRIX ITERATION

22. Use matrix iteration to determine the natural frequenmes of the
system shown in I‘lg 3-36. ”

SEVERAL DEGREES OF FREEDOM

From influence coefficient theory, the equatlon of motlon can be wrxt—

ten as
—x; = a“4m xl + 01227)1 xz + ay3Mm xs
Xy — (1214771 ml + a222'm xz + a@g3M &;3 g
—x3 = 0314m x]_ + a322m a:z -+ a33m x_-,

When z; is replaced by

— w2x;, the equations take the form -

2y = daymzie? + 201m202% + ayymrzw®
To = 4a21'm9:1w2 4 2a22mx2w2 + a23mx3m2 x
X3 = 4(!31777-(121(02 + 2(1’3.2’"1562(.02 + va33mx3m2'

In matrix notation, this becomes

%y 4oy 2052 13 || %y
) = wm 40421' '2(122 :1](_223 Xg
T3 4(!31 2&32 x3'

%33
" The values for the mﬁuence coefﬁclents. were found in Problem 16,
Page 88, to be : £

w Yy m—Ldlg

azr = ajg = ag :— 1/3k ago "= a3z = a3 = 4/3k,

When these values are substxtuted into the matrlx equatlon, we obtain

To start the 1teratmn process, estxmate he conﬁguratxon of the ﬁrst mode.

 agy = 1/3k

[CHAP.3

2m

Fig. 3-36

-

- _Let xy =1, 23 =2,

X3 = 4. s
First 1terat10n . <
1 TH2 e 1
3 |via 36| = “’3—’"—(12) 3
S 8l e
4 48 : S 4
Second iteration
1 14.0 A 1.0
W=
3 = 40| = “HF(14)| 32
4 56.0 | 4.0
Third iteration: 1 S 2 . .
55 ol g e st 14 e | 1.00
e S 2 i LT A m S o (]
3.2 =l e .4 8 4 |k 32 = N 45.6 il (14.4) | 3. 18
4 - 4 8 LAk e ekl B8 : 4.00
] g
Since the ratio obtained here is very close to the mltxal value,
1.0 g | 1001 : S5 : i
32 | = —3;"“’— 3.18 Cor - --‘1v=>(14.4mw2.)/3k and oy = 0.46Vk/m rad/sec
4.0 4.00 e e e e R, : W Siv

To obtain the second principal mode, the ortﬁogc;nality principle is used:
mA A, + myB By + m30102 = 0

For the first and second mode, thxs becomes ,
4m(1)A, + 2m(3 2)By + m(4)Cz =0
—1.6By — Cy, -~ By = B,, C,

or A, C,




and in matrix form

rA _l o —1.6 —1.0 || A,

B; = 0 1 0 1B
LCg_J . 0. -0 . 1 o Cz
When this is combined with the matrix. equatlon for ﬁrst mode, it will converge to second moc
xq (-4 2 1 [ -—16 —»1.0 2y : 5 0 —4.4 —3 [xl
| @2 = “’”"‘ 8 ‘4 0 < SBRH C lg SR e 33% 0 1.6. 0 || x,
zg v L 8 -7 (1 5 0 e | * an-‘_’ : s o 0 16 3 g
5 : Ak - 1
Due to symmetry of the problem the second mode is | . When this is used to start the i
. brocess, we have _ _—1
T e —4.4 —3 1: i
g CHE w=m e . e wNnt
0 = Jurgye 0 1.6 0 _ ‘0 = 3%

—1 ' 01658 <y , —3
~ which repeats itself. A»Hence

L | 0 1

0 = 3—;”]»“’_ 0 [+'n for io 1= («*m)/k ' and - w, = Vk/m rad/sec

To obtain the thxrd mode, write the orthogonahty prmcxple as -
) nllAzAs + m23233 “+ 'm3C'2C'3 =.-0
m1A1A3 + sz Ba + 777'3C1C'3 =O

Substltutmg Al =1.0, B, —3. 2, Cy= =4.0, 4, =1, By =0, and Co _"—1, mt
we obtain

he orthogonality . equ

4m(1)As + 2m(0)By + m(—1)Cy = 0

4m(1)A; + 2m(3.20)B; + m(4)C3 =0
from which Az = 0. 25(:3 and By = —0.78C;. Then g
rA" ‘ 050 0.25
B - i="T0-""0-"-073

Gy 0 -0:1.00

and when this is combined with the matrxx equatxon for the second mode (it will yield the thlrd

x, .| 0 —44.-3110 0 025 ||| s 0. 0 ;043 |7 |4

e | = M0 16 ol||lo 0o —78||x| = “mlo 0 —125 ||a |

3 | - : 0 1.6 3 0 0 1.00° T3 2 0 0 1.75 .| | =, /

4 ' 10 0 0.2 x; 3

, : wm 'm, - - 3
or Tz | = (1 75) 0 0 ‘—172 25 |. 8
x3 . 0 0 1.00 || a5 7

Assuming any arbitrary values for the third mode, it can be shown that the same third mode
will be found. Further iteration .is therefore not necessary. Thus : " :

1 = (w2m/3k)(1.75) or - wg = 1.32\/k/m rad/sec

T &




. Use matrix iteration to determi
ne the nat r
shown in Fig. 3-37 below. ur al frequenmes of the

From influence coeﬁici_ent theory, the equations of motion are given by -

—x, = aymy ¥y + apma Ty + agzmg %
—2y = gy Ty o azems Fp +oazymy Dp
—x; = agMg Xy + agaMe Ty + azyMa Ty

Replacing %; by — w2z;, the equatlons take the form

® = apmze? + apMere® + aygmggu?
o = azxmlxlwz +. (X)zmzxzwz + a23m3x3w2
xg = aalmlxluz + agaMma®an®. it agazMaTaw?

-To obtain numer ical values for the mﬂuence coefficients, put
Ll =Ly,=L;=L and m; =my=mg=m in Problem 17, Page 89:

@y =,012 = @13 — L/3mg f t
aszy = L/3my, agy — ag3z — 5L/67ng
a3y = L/3mg, azs = . BL/6mg, azz = 11L/6mg Fig. 3-37

In mat.rix notation, then, the equatio'ns'become

%y s 2B | e
@ —6‘53 2 5 5| ®
lxg - 1726 ;11 xg

Begin the iteration process by an arbiﬁfary assumption for the first mode of the system.

First iteration:

0.2 iz 2ine fLeaianea o) 86 : e o | e
0.6 = Le?l o gripiilos | i= |84 = =2 (14.4)| 0.58
6g . : . 6g 69
1.0 2 ~Biiaie) T B il 14.4 1.00

Secox}d iteration: - _
7 S = , :
- 0.25 o 22 ciaep [0B] s ] - 366 L 0.25
0.58 = Lol 5ogigrilose |l = =] 842 = =97 (14.4)| 0.58
6g et > - 6g 6g
1.00 2 B3l v1.oo_ : | 144 | G 1.00

Smce the column repeats itself, the 1teratxon process can be stopped Then
1= —-(14 4) o ey = 0.65v/glL ssdjase

To obtain the second mode, the ﬁtst mode has to be suppressed during the xtera.tlon process. ’“I‘h,is %
is done by the use of the orthogonahty prmcxple M

; m1A1A2 + 7n23132 + m;;ClCz —,_ 0

Substltutmg the ﬁrst mode mto the above" quatlon, We obtam
- m(0. 25)x1 + m(O 58)x2 + m(l O)ac

‘and in. matrlx form, thls becomes

has no ﬁrst mode present:

gl ok *l.g.ig g o082 ey B 0 =56 =6 || &

2 ’ : ] 2
@ = %% 2. 608 150510 -0 (lws] = %“g’— 0 04 —3 ||m
23 26 11 0050 x3 | "0 04 38 x3

From this matrix equation, use matrix iteration to determine the second mode.



First iteration:

didriecla ek SR

e
)
7]
2

Second iteration:

S o G —
-1.8 | 'L 1026 —6__t 13 I —26 | I/-—l.OS
T e R T R S e BT R (2 B =25 4
| O- : 2.5

: 1.0 1.00
Third iteration:

SR LTy E—o —2.6. —§6 =1:0 5l —2.41 [ i

L2

i S e i

-L?

—1.4 =" = 20: —1. = .. —/—|.—3. —(2.5) —1.

: 60 0 4 3 1.4 S 3.5 T (2.5) 1.4

1.0 : 0 0.4 3.3 1.0 : A% Cna D 1.0
: , | .
Since the assumed mode in the last iteration repeats itself, the iteration process can be stoppe
mode of vibration and the natural frequency are therefore given by 1
'—1.0 ] o . S 4
—1.4 =and L = ——w—(2 5)  or wy = 1.52Vg/L rad/sec :
1.0 &5

In order to obtain the third principal mode and thus the third natural frequency of the’
both the first and second modes must not appear in the iteration process. This is again done b

the orthogonality principle expressed as 7
m1A1A3 -+ 77123133 + m3C1C'3 = 0, 2 'm1A2A3 -+ 7712.8233 -+ 'm3C2C3 = 0 ‘
For first and third modes, this becomes :

m(O 25)xy + 'm(O B)xs + m(1. 0)'t3 = 0

aqd‘ for second and third modes, we have

m(—1.0)x; + m(—1.4)xs, + m(1.0)x3 = O or x; = 83, xo = —Dxg, vz =
1 : = | o= | : ¢ 0 8 xy
and in matrix form, 23 =2 50 0i:~—b o
x3 4 0 0 1 x3
When this is combined with the matrix equation for second mdde, we obtain the matrix equal
third mode: 3 e ‘|
2i | 0 =28 -8 |lo 0 8 |le 0o 0 17 rxl ‘
_ L2 ; 3 ' Lw?

To S 0 04 —3 0. 0 —5 Zo = g 0 0 —5 x5

23 O 04 3 0 O 1i ag : 0 0 1 2y
" Assume any convenient value for the third mode, and start the iteration process. It will E

7 G T : 7

" that the same mode shape [——5] is obtained repeatedly. This means that [—5:‘ is actually ﬂ

mode of the system. Thus 3 :
1= sz/Gg - and 2l wg = 245V g/L rad/sec

The three natural frequencies “of the trlple pendulum are therefore'given by

© = 0.65\/g/L, - wg = 1.52v/g/L, w3 = 2.45V/g/L rad/sec

L Determme the highest natulal frequency of the three-degree-of-freedom spr
system as shown in Fig. 3-38 below. Use the inverse matrix method.
As discussed earlier, the deflection equations of the masses are

: [—‘% s
w*m

®2 | .. T2k
x3

Zy

e

l
1o pepe

VS
A SR R ..\xs e S MU R B



. Determme the highest na.tulal frequency of the three-degree-of-freedom spri
Use the inverse matrix method. :

As discussed earlier, the deflection equations of the masses are

system as shown in Fig. 3-38 below.

H I w*m 1 1 o
| = el t B ||
x3 ¥ 31 *3
Using inverse matrix theory, this can be written as
x, 1 3 3 x,
2k
= x5 2 1 3 = 2N
W= -
xg -é- -,} 2 xg N
. —1
¥ T - 33
where [D]—! = % - 1ok is the inverse of matrix [D] = _3. x|
3 %1 3 ' T e
From matrix theory, Adjoint [D] can be found in the following manner:
" 13 L IR
—1)1+1 2 —1)1+2 —1)1+¥3 :
P : My 1 13 g 3 -—1
Adjoint [D = —1)2+1 —1)2+2 _—_1)2+3 = = —1 3
[ ] (—1) % 1 ( 1) t _}_ 1 ( 1) : % '-l“ # 4 _q oy
b | 1% e
(—1)3+1 3 S (—1)3+2 (—1)3+3
BE R et e 31
(e N B gt
and 1P| .= 3.1 % =i s
A 1
s : ‘g —1 —1
Hence (D12, = A P ) fa st
»[ _X: B O e e ¢ 3__‘
The inverse matrix.[D]~! can also be found by the elerentary operations as follow:
Operation (D] [D]—1
Multiply [D] by a factor 5 172 5.om1/2 1 [ o
of 2 1/2 1 1/2 50 1 o
1/2 1/2 . e B = 0 0o 1
Row (1) minus row (2) 2 1 sapi Bt i 2 o o 1
1 2 ks S0 2 0
: 1 1 B 0 - o 2
Row (3) minus row (2) 5 =1 [e] 22 —2 (6]
: 1 2 P e o 2 o
1 1 27" 0 (o] £2
Row (2) minus row (3) 1 —1- <0 52 —2 .0
1 2. o § = 0 2 o
o —1 1° 0 —2 2
Row (2) minus row (1) R —1 0 = 2 2 )
1 3 0 0 4 —2
o s 1 =0 —2 2
Multiply row (2) by a 1 —1 ‘0 2 —2 o
factor of 1/4 [} 4 [0 I —2 6 —2
; (] —1 5 § (o] —2 2
Add row (2) to row (1) 1 —1 (¢] 2 —2 o (o3
: ) .0 1 a-ih0 —1/2 3/2 —1/2
o == == 1 "0 —2 2
Add row (2) to row (3) 1 .0 "0 -.8/2 —1/2 —1/2
o 1 0 —1/2 = 3/2 —1/2
0 —1 35 o —2 2
1 (0] (o) 3/2 —1/2 —1/2
0 1 --0 —1/2 3/2 —1/2 z
(] (0] b —1/2 —1/2 3/2

IL
,
E|
4
3
E

«




which also gives [D]~! =

Substituting [D]~! into equation (Z), we have

x ’ 3 - —1 -1 x 3
ry |ois e BEYIN| e g W 3

& =5 wm \2) T2
3 —1 -1 3 T3 i

a = 1
Assume the third mode to be {—2:{ and sulftitute this into equation (2) to obtain
1 !

1 g 1 Y 1] 1

L - i b . _ 4k | _
o Dl i Rl Wit
1 -1 -1 3 1 :
1 , . : 3
The assumed mode | —2 | repeats itself. This means the assumed value is the third mode. Henc
1 G .
1 = 4k/o?m’  and wg = 2Vk/m rad/sec 2

25. Use the Inverse Matrix method to determine the highest natural frequency of '
spring-mass system as shown in Fig. 3-39.: :

% x4y : X2 . X3
e . T" Ny 31"
“o.o.“o.o ot Wy

L 4 4 74
~ Fig.3:39
From influence coefficient theory the equatlons of motlon can be expressed as
—xy = apm xl + a;p2m 3 :c2 + a;33m :ca
LTy = agyMm a:l + a@ga2m x;,_ + agz3m :v',
—%3 = azgmT; + az.2m x2 + azy3m 2,

where ay] = ajo = ajz = 1/3k; agy = 1/3’0, gy = Qg3 — 5/6k, ag; = 1/3k ago = 5/6’» . ¢X33 == "
Replacing ¥; by —w2x;, we have E

xl = au’m.xlwz + 2&12771152&)2 + 3a13mx3w2
g = am'mxlwz ’+‘ 2&22771372(02‘ 4 3a23mx3m2
) T3 = a31mx1w2 —+ 2a32mx2w? + 3(133?7151230)2
or in matrix notation, R
Y 2 2 ‘ 4 6 Ty
: T wem
x = —=-1 2 10 15 x
2 - ' 676' 2
©g ele1e” ag |

Using inverse matrix theory, equation (2) can be written as

-1 —

6k xl' 2 4 6 i X1
m‘ sz 2.10 15 = Lo
: 3 2 10 33 |- 3 -
' -1 T~ :
2 4 6 ' 2 4 6
where [D]-! = 2 10 15 is the inverse of [D] = 2 10 15

2 10 33 2 10 33
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Eilg

Substituting [D]7! = 16 =1 3 ——% into (3),
¥0i=F %
ETR & B =2 0 |i%
B\ T R -1 -5 1|2 : ‘ )
X3 0 —% % XT3
, 107 , - T =i
Assume the third mode to be | —4 | and begin the iteration process with ‘equation (4).
£ Q 1. A
. First iteration: : e
10 ) are =270 [ 10 f 58 : 34
DT s k| 165 | = D] 07
S me? faed s A " mw? ) T me? B
1 e e S e 1715 1.0

Second iteration: -

30 clos o || 30 | k 1m0 | "k' 46

1 1 % ol AR 5 A 1

Third iteration:

45 5 —2 0 T o i 51

i e b sty o el = Bligl = el
b Bt ) e M = =l
1 : 0 =g kil | 02 e B Y 1
TFourth iteration: ' ;

60 L o || eo L | 3 5 B 60.7
~gp| = g =Lt g Bt B —(54)| —163

1 0 -} ¥ Lol mine bl 54 el

The assumed column approximatellyﬁ repeats itselfﬁ this means the assumed value is correct. Hence

1= %’3(5.4) and wy = 2.36Vk/m rad/sec

2202222271271 1S.




THE STODOLA METHOD

26. Use the Stodola method to _ﬁnd' the furi‘dam'erital mode of vibration
and its natural frequency of the spring-mass system as shown in
Fig. 3-40. k= ke=ks=1 Ib/in, m1 =Mz = ms = 1 lb-sec?/in. -

Assume that the syétemv is v'ibra.f.ing at one of its i)rincipal modes with
natural frequency o and that the m_otion is periodic. Then the system is’ k.
acted upon by inertia forces —m; %, Now - ' '

Xy = Ai sinwt ""and -._mia;i = wzmiAi_

The Stodola method may be set up in the following tabular form as
follows; Assuming an arbitrary set of values for the fundamental principal- .
mode, the inertia force acting on each mass is equal to the product of the C ks
assumed deﬂef:tion and the square of the natural frequency as shown in
row 2. The spring force in row 3 is equal to the total inertia force acting S
on each spring. Row 4 is obtained by dividing row 3, term by term, by ™ms
their respective spring constants. The calculated deflections in row 5 are
found by adding the deflections due to the springs, with the mass near the Fig. 3-40
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fixed end having the least deflection and so on. The calculated deflections are then compared with
the assumed deflections. This process is continued until the calculated deflections are proportional to
the assumed deflections. When this is true the assumed deflections will represent the configuration

of the fundamental principal mode of vibration of the system.

Iy my key My ky mg
1. Assumed deflection - 1 1 1
2. Inertia force w” w? w?
3. Spring force 3w 202 w>
4, Spring deflection - 3w? 202 w?
5. Calculated deflection 302 5w? 6w?
. -
1 1.67 2 |
% by
1. Assumed deflection ' ‘1 1.67 2 %
2. Inertia force o 1.67w? 2w? i
3. Spring force 4.67w? 3.67w2 | 202 .:L§
4. Spring deflection 4.67w2 3.67w? 202 .
5. Calculated deflection 4.67w> 8.34w? 10.34w2 -
5 2 1.79 2.21
1. Assumed deflection 1 1.79 2.21
2. Inertia force ) w> 1.7962 2.21w?
3. Spi'ing force 502 : 402 2.2102
4. Spring deflection 5w? ' 402 2.2102
5. Calculated deflection 5w2 Yw? 11.2102
1 1.8 2.24
L 1.007] : _ 3
The assumed deflection | 1.79 | at this point is very close to the calculated deflection. Hence the
2.21 1 '

fundamental principal mode of vibration is given by

1.00
1.80 .
2.24

and the fundamental natural frequéncy is found from -
1.00 + 1.80 +2.24 = (5+9+11.21)w2 - or

w; = 0.44 rad/sec




7. Use the Stodola method to determine the lowest natural frequency of the four-degi:
of-freedom spring-mass system as shown in Fig. 3'41'.

‘. | -‘\ ¥ “ 7, 200 // —:

Fig.3-41

Z

iZeniie
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See Problem 26 for explanation and procedure.

ky=4k | my=m | kg =3k | mg = om | kg =2k {mg=3m | ky=k | my=dm
Assumed deflection 400 % fow 2o 3.00 2.00 . 1,00 | |
Inertia force dot o [t 6w? 6w 402
Spring force 2002 s e 1602 : 10w? 402 8
Spring deflection 52 ’ s 5.3w2 s B2 ' 462
Calculated deflection 52 - ' 10.3w2 . 15.302 19.32
Assumed deflection 1.00 KR 2.00 3.00 4.00
Inertia force w2 3 - 4e? 9w? 160?
Spring force 3002 S 2942 ¥ 2502 | 1602
Spring deflection Tebud L TR ket « |- 18502 1602
Calculated deflection ol BeE. ki 17.22 | 29.742 45.7u2
Assumed deflection |- | 1.00 |0 2.00. - 4.00 . 6.00
Inertia force w2’ e 4o? 1202 ' 240?
Spring force 4102 w406 | | 86w 2402
Spring deflection | 10.25w2 et 1 8,802 7 - 18w? : 24w?
Calculated deflection | - 102502 |- - | 23.550% 41.5502 65.550°
Assumed deflection : 100 Skl 2.2 ' _ 4.00 6.4
Inertia force . B B O Rl M X T ; 1202 ' 25.60
Spring force 4302 _ L 4202 Py 37.6w2 25.6w%
Spring deflection 10.7502 i 1402 18.842 25.602
Calculated deflection | 107502 | | 247502 | 435522 | 69.150
100 gy | 7 2.30 ' 4.05 6.42
_ _ e 100 ‘
Therefore the first principal mode is given by igg and the lowest natural frequency is ob-
tained from : . : : A5 : , &
- bt | 848

Hence ' ‘ Wi = 0.093 and 0y = 0.306Vk/m rad/sec



28. Prove that the Stodola méthod_will, 'co'nve'rgevto_ the fundamental mode of vibration. 2

The Stodola method begins with assum'e'a' deflections for the fundamental mode of a system. The
corresponding inertia forces due to these assumed deflections are caleulated. Compared with actual
inertia forces and deflections of the system, the inertia forces just found will produce a new set of =
deflections which is used to start the next iteration. The process is repeated. Eventually, this process =
will converge to the fundamental mode; the degree of accuracy depends on the number of iterations.

i

The general motion of an n;dggree-of-fréedom systerﬁ is given by

zy = Ajpsin(egt +y¢q) + Az sin (wat + o) 4+ -+ A,; sin (wnt + ¥n) v
%y = Bpsin(ut+¢;) + Bysin(wgt +ys) + oo+ Bpsin(ent + yn) : (1)
X3 = Cl s_in (wlt +x[/1) + Cz sin (“’2t +: \llz) + i + Cn sin (wnt + \bn)

...............................................

-------------------- K

Let the assumed ‘deflections be an arbitrary superposition of all the modes of the system, with
constants ag, as, ...,ay, iy :
Xy = Ayt ady + o0+ a,A, i
%o =: @iBy +'asBy + '+ aBy - e ; (2
23 = a;C; + a3Cy + ++ + a,Cp

----------------------------------
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: . g : gl

I'he corresponding inertia forces are
i

mylaly asAq + aApe i

(C))] !

+
e . mola 7y + @Bz + 7 + ap,Bpw?
+ + a'n(j*n)“"2
. |

are the masses.of the system and o is the natural frequency. ‘

where 1y, My, - - ., My
pal modes present, the inertia forces and

Now if the system is vibrating with all the princi

the corresponding deflections are
4+ Anel), (A + Ax+ e+ AL

my(Aq 02 + Aged +
digByE o Bash F 2o+ Bt (By + By + -+ + B @)
mg(Crw? + Cgud + <+ F CresZ (Cy 4+ Ca + --- '+ Ca) :

a forces in (3) will produce a new set of deflections:

w2(aA /e + asAgfed + + apAnfe?)
wz(a131/w% 7+ a-—_)_Bz/w%‘ 4 e + a'an/w%;
o(a1C/wf asCyfey + - + anCn/o})

Hence the inerti

Now ' : ; S n .

) i i w'—’-(a»lA 1/(.0?1' + 'U-2A2/w;"'5 e =t a,‘Aﬁ/M%l)

x, = w2 Byfw} + asBafwd + ¢ + a,Bn/wl)
+

we | He Vancn/wi)"

xg = o*a;Ci/e} + ayCa/w}

..............................................

Using the deflections in (6) as the assumed deflections, and carrying out exactly the steps in the last

iteration, we have :
; x, = oadi/e} T axAgfut + -0 T+ anAn/ol)
@y = wMaBifet + aBafej + o0 T anBn/eh) F

xg = wi(a;C1/et + ayCofwl + - 4+ a,Calet) 3

After r iterations, the assumed deflections take the following general :Eorrﬁ:
=  @2r(o A /el + axdp/eln + ot + andn/el)

X =
xy = w27{aB l/w%" -+ ang/w%" + - + a"B,‘/w?‘r)
xg3 = o2r(a,Cy/ed™ + a;Cofelr + =+ + anCn/e?")
.................................................. >
or i t :
xy, = (@027 /w3)(AL + oA 902" [y w3T <o+ apdael” Jaye2T)

+
Xy -"—‘ (@102 /w3 ) (By + asBswi/a fwsTs =k + a,Baw}’ Jai0?")
ue

nd ‘as the number of iterations is sufficiently large or the value Of
» assumes a sufficient large number, the ratios of the natural frequencies become very small. In mos)
cases, less than ten jterations are required to:obtain the fundamental mode of the system. Thus fol
sufficiently large numbers of iterations, the calculated deflections in (9) become &

As o < wp o3 < 0 < wp, 2

xy = aiAlw?"[w'-]"_r, ) xy |- 2 . A.x
g = ayBie? e}’ x 2 B

& A 1 or 2 = 0027/ 3
x3 = a1C1w2'/u21" A' + X3 01

ely the pure fundamental mode of vibration of the system.

which approaches very clos
undamental mode of vibration for an

Thus the Stodola method converges to the £ n-degrees
freedom system.
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THE HOLZER METHOD

29.

‘frequency happens to be one of the natural fre

Use the Holzer method to determine the
natural frequencies of the spring-mass
system as shown in Fig. 3-42. Here
my = me = ma = 1 1b-sec?/in.

Fig. 3-42

Begin the Holzer tabulation with the column of position, indicating the masses of the system
The second column is for the values of the different masses of the system; this information is given.
The third column is the product of mass and frequency squared. Displacement comes next, and is
obtained from the preceding row minus the total displacement at the end of the same row. Column
five is just the product of columns three and four. The total inertia force is inserted in column six.
It is equal to the sum of the total inertia fqrce in the preceding row. plus the inertia force on the
same row. The rest are plainly evident.

If the assumed.

An initial displacement, usually equal to unity for co

the system should be zero.

force is not equal to zero,

This is because the system is h

quencies of the systems,

nvenience, is assumed.
the final total inertia force on
aving free vibration. If the final total inertia
the amount indicates the discrepancy of the assumed frequency.

W Table Q
Position m; - myw? x; m;xw? > mxw? ki > mizw?/ki;
1 : 1
Assumed frequency, o = 0.5 b -3 ;
1 0.25, 1 0.25 0.25 1 0.25
] L —2
1 0.25 0.75 0.19 7 0.44 1 0.44
P il 11
3 1. 0.25 0.31 0.07 ~ 0.51
Assumed frequency, w = 0.75
1 1 0.56 % s 0.56" 0.56 1 0.56
1 0.56 0.44 0.24 0.80 b 0.80
3 0.56 —0.36 —0.2° 0.60
Assumed frequency, ' =:1.0
1 1 1 1 . 1 1
1 0. 0 ik 1
3 1 —1 —1 0
Assumed frequency, o = 1.5
1 1 . 2.25 1.0 2.25 2.25 3 § 2.25
- 225 —1.25 —2.82 —0.57 1 —0.57
3 1 295 —0.68 —1.53 —2.10 :
Aésumed frequency, «» = 1.79
1 1 8.21 1 3.21 3.21 ! 3.21
* 32T —2.21 —7.08 —3.87 1 -3.87
3 3.21 1.66 ~  5.34 1.47
Assumed frequency, o = 2.9
1 1 4 1 4 4 1 4
2 1 4 -3 —12 -8 1 -8
3 1 4 5 20 12
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AF (= ?m.zm’)
15+
10 +
5 -
1.0 2.0
y \./ : =
e
Wg Wy
Fig. 3-43

Therefore the natural frequencies are w; = 0, wp = 1.0, w3 = 1.7 rad/sec.

-



30, Use the Holzer method to determine the natural frequencies of the four-mass
system as shown in Fig. 3-44, if k=1 Ib/in and m =1 lb-sec*/in. '

See procedure given in Problem 29.

Table
Item m Mmw? X maw? S mrw? k| Smaek
Assumed frequency, o = 0.2 _
1 4 16 1° 16 16 1 16
2 g 12 84 101 261 52 13
3 .| 2 08 it LT el 3 8; 105
4 1 .04 605 025 .342 4 0855
5 w © 5195 i
Assumed frequency, o = 0.3
1 4 .36 F LTy .36 1 36
2 3 21 5 64 1738 533 10 267
3 2 18 373 - 067 600 3 200
4 1 .09 173 0155 8155 4 1539
5 ) ® 0192
Assumed frequency, » = 0.4
1 4 64 - 64 64 1
3 48 36 173 813 2 406
3 2 32 —.046 | —.0147 798 3 ©.266
4 1 16 —312 —.049 748 4 187
5 ) © —.499 : 1
Assumed frequency, v = 0;6 :
1 4 1.44 1 144 . 1.44 . 1 1.44
3 | 1.08 —.44 4G & 965 2 A82
3 ) 2 - =922" —.664 2801 3 .100
4 1 .36 —1.023. —.368 —.067 4 —-.017
5 ) ) —1.006 : ‘
Assumed frequency, = 0.8 2
1 4 iR et adas. [FTREB 2.56 1 2.56
2 3 192 - °| *, . —1.56 —3.00 —44 2 .| -.22
3 2 1.28 —~1.34 ~1.72 —2.16 3 —-73
4 1 64 —.61 —.39 —2.55 4 —.64
5 %, © ~ .03 ‘

)

Bf!ﬂé (VMY gm VY — Bm‘AA_A.m amm

Fig.':



104 SEVERAL DEGREES OF FREEDOM

[CHAP.3

Table (cont.) -
Item m mw2 x maw? SEmaw? k Smxw?/k
Assumed frequency, » = 1.0
1 4 4 o 4 4 1 4
2 3 3 -3 . —9 —5 2 —2.5
3 2 2 —5 -1 —6 3 —2.0
4 1 1 1.5 1.5 —4.5 4 —1.1_3
5 © o 2.63 :
Assumed frequency, « = 1.5 t
1 4 9 1 9 9 1 9
2 3 6.75 —8 —54 —45 2 —22.5
3. 2 4.5 14.5 65.3 20.3 3 6.77
4 1 2.25 7.73 17.4 37.7 4 9.43
53 @ «© —1.70
Assumed frequency, o = 1.8
1 4 12.96 1 1296 12.96 o6 12.96
2 3 9.72 —11.96 —116.4 —103.44 2 —51.72
3 2 6.48 39.76 ks 257.7 154.26 3 51.42
4 p 3.24 —11.66 .. —317.8 116.46 4 29.12
5 L © —40.78 ! Sy
Assumed frequency, o = 2.0
1 4 16 1 16 16 s & 16
2 =3 12 —15 —180 —164 2 —82
3 2 8~ 67 536 372 '8, 124
4 1 4 —57 —228 144 4 36
Assumed frequency, o = 2.5 :
1 4 25 1 25 25 1 25
2 3 -18.75 —24 —450 —425 2 —212.5
3 2 12.5 188.5 2360 1935 3 645
4 1 6.25 —456.5 —2860 —925 4 —231
5 © : L —225.5 Ly
Assumed frequency, » = 3.0
1 4 36 1 36 36 1 36
2 3 29 —35 —945 —909 2 —455
3 2 18 420 7560 6651 3 2220
4 1 9 —1800 —16,200 - ., —9550 4 - —2388
5 o LS 588 . ) .
Plot the curve with the assumed frequen- zh
cies against the amplitudes of the fixed end as
shown in Fig. 3-45. The natural frequencies of
the system are given by the intersections of the
curve with the frequency axis. The natural et .
frequencies are 0.5 1.0

w; = 0.30 rad/sec
ws, = 0.81 rad/sec -
wy = 1.45 rad/sec
wg = 2.83 rad/sec

Note: Curve is not drawn to scale.
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BRANCHED SYSTEM

31. A four spring-mass pranched system is shown in Fig. 3-46. If the masses are moving
in the vertical direction only, derive the frequency equation of the system.

The equations of motion are given by 2 = ma:

myx, = —kgxy — Ea(eg— Xq) =

My s = —ka(we — ;) — ka(@s — 23) — Fea(zy — %4)

myxy = —hkgleg— %)

my gy = —ky(wg— 29)
Rearranging, _ : )

my ¥y + (g + kg — koxy = O *' Tx;

my Xy + (kg + kg + kgwy — kyxg — leywy — oy = 0

mg 'x'a + kgxy — kgt = 0

my 2y + kyxy — K4%a = 0

Assume the motion is periodic and is composed of harmonic T

components of various amplitudes and frequencies. Let : X2

2, = Acos(wt+y), % = —w?A cos(wt+y) K ks

xzy, = B cos(ot+y), Zv.z = —w23 cos (wt+¥)

vy = Ccos(wt+y), x3 = —o*C cos (wt + ) & G

ms
g = Dcos(wt+y), %, = —w2D cos (vt + ) i |
T4 X3

When these relations are,v substituted and the term
cos (wt + ¢) cancelled out, the differential equations of motion
become a set of algebraic equations: )
) (kg + ko — meDA — kB = 0

—koA + (kg + K3+ Ey — mow?)B — ksC — kD = 0
—kgB + (k3 —mz?)C = 0
—kyB + (kg —my?)D = 0

from which the frequency equation is obtained by setting-the determinant of the coefficients 4,B,C,D

Fig. 3-46

-to zero. )
(kl + k2 =~ m'lwz) _kz 0 . : 0
—kz (kz + ks + k-,‘ - m2w2) —'ks —764 0
0 —kj (Jog — M3w?) 0 -
0 E2 —’04 5 0 ) (k4 = m4w2)

Expand the determinant and simplify to obtain ;
i [k1+k2 L L i‘i} g

my my ma my

L [Feka+ ekt + Tk, + Jogky + Fegs | Jegkia+ Fegks | Feaks + Kok
N My . 7";27"»3 myms

]C2k4 + k3k4 k1k4 + k2k4 G k3k4 4
—_— W
MMy . mymg mgmy

_ yJooleq + lookoaleq kqksley koksky (Feq + Eo)kgky
mymoMs MM 3Ny MmgMygny

Tey(FesTeo + Teokeg + k3ky)
G2 w2
M4M Mo B

1L MoMgily
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system as shown in Fig. 3-48.

5k
. YWWWWWW
VZ T L :
7 4m
: 5k
YWM/A
/W/W/-/ 7 /;//7"////%//;/7/////%;///7/,}/5//%7' 7

Fig. 3-48

See Problem 26, Page 98, for an explanation oth the Stodola method.

ky=Tk | my=4dm ky = 5k | my = 3m ky=5k | my=2m
Assumed deflection T 1
Inertia force : 402 : 302 202
Spring force 92 " 842 20?2
Spring deflection - 1.3a2 : 0.6 ; 0.402
Calculated deflection 1.302 _ 1.902 1.742 °
¥ 1.46 1
Assumed deflection I : : 1.4 13 3
1 . S s f
Inertia force § 402 4.202 2.6w? ]
Spring force 10.842 4.20° 2,602 E
Spring deflection . 1.5402 0.8442 0.522
Calculated deflection . 1.5402 2.3802 2.0602
1 1.54 1.34
Assumed deflection 1 1.52 1.34
Inertia force 42 : 4.5602 2.680?
Spring force 11.2442 4.5602 2.68w? 4
Spring deflection 1.6102 0.920° 0.53w?
Calculated deflection 1.6102 2.5302 : 2.140?3
1 1.56 132 %
Assumed deflection 1 1.56 1.32 4
Inertia force 402 4.6802 2.6402;
Spring force 11.3202 : 4,682 2.6402 ¢
Spring deflection 1.62w2 - 0.93w2 0.53w? _
Calculated deflection 1.6202 ‘ 2.5502 2.150%}
1 1 1.57 1.33
1.00 4
The assumed deflection | 1.56 | at this point is quite close to the calculated deflection. Hence t,
1.32 ] E
1.00 3
fundamental principal mode of vibration is given by | 1.57 | and the lowest natural frequency is fout
from 1 1.33

(1+1.574+1.83) = (1.62+ 2.55 + 2.15)w? or w; = 0.79Vk/m rad/sec
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sranched 33. Use the Stodola method to ceiermine the lowest natural frequency of the branched
system as shown in Fig. 3-48.
Fig. 3-48
See Problem 26, Page 98, for an explanation oft the Stodola met.hod.
ky =Tk my = 4dm ky = 5k my = 3m ky =5k | mg=2m |
Assumed deflection | 1
Inertia force 402 ; 302
: Spring force w2 C 3u2 202
3 = 12/35k; Spring deflection - 1.3.2 : 0.602 0.402
¢ Calculated deflection 1.3w? 1902
/ ”
: 1 1.46
Assumed deflection i | y : 1.4 2
: :
Inertia force : 402 4.202
: Spring force 10.802 4.2 2.602
. Spring deflection . 1.5402 0.8402 0.5202
i 2 Calculated deflection s 1.5402 2.3802
R 3 1 1.54
. Assumed deflection 1 1.52
: Inertia force 4o 4.5602
R Spring force 11.2442 4.5602 2.68w2
g Spring deflection 1.6142 0.920° 0.53w?
ﬁ Calculated deflection 1.6102 2.5302
B y ;
1 1.56
Assumed deflection 1 1.56
Inertia force 442 4.6802
Spring force 11.3242 4.68w2 2.64w2
Spring deflection 1.62w2 . 0.93w? 0.530?
Calculated deflection 1.6202 2.5502
1 1.57
. i 1.00 4
. pproxi ¢ . sold o . . "
The assumed deflection | 1.56 | at this point is quite close to the calculated deflection. Hence ti
g 1.32 ] ]
1.00 A
fundamental principal mode of vibration is given by | 1.57 | and the lowest natural frequency is foul
from L1.33

(14+1.57+1.83) = (1.62+ 2.55 + 2.15)w? or w; = 0.79Vk/m rad/sec
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THE MECHANICAL'IMPEDANCE METHOD .

34 Use the Mechanical Impedance method to ﬁnd the frequency equation : WY
of the spring-mass system as shown in Fig. 3-49.
The mechanical impedances are k-and —mw? for spring and mass. 6k

For junction z, this becomes -
(6k + 4k — 6mw?)zy

where the slippage term is 4kx,. Since there is 'no fo-rce acting on junction =z, b —T
one equation will be obtained as Gl Z
' (6 + 4k — 67n¢o2)x1 - 4kx2 = g =
Slmxlarly, for Junctlon xy the equ'mon is ; : t
(4k + 2l — 4mw)zy — 4ka,1 - 2:c:c3 =0 e & :
where 4k*::1 and 2kwx; are the slippage terms. : ) —L' Pe

For junction z3, this is given by” B e O Sedden i ui
- (2k — 2mu?)ay — 2kay = 0 '

Rearrange the equations to get

AN ; ; 5
(10k — 6mw?)x; — dkaxy = 0 . o I :
—4kz, + (6k —4me?)zy — 2kx3 =.0 _ : 2y
—o 2 i, ! )
. 2Lz + (2k — 2mw )a:3‘ 0 5. ; : Fig. 3:49
Hence the frequency equation is given by :
(10k — 6ma?). Mg o -
—d4k! (6 — 4dmw?). —2k = 0

0 =2k (2% — 2mu?)

35. Use the Mechanical Impedance method to determine the steady state vibrations of the
masses of the system as shown in Fig. 3-50. Let k= ks =1lks=1kis=11lb/in, ci=c¢
c3 = ¢4 = 1 sec-lb/in, M1 = me = ms =1 lb sec2/1n, and o =1 rad/sec

Focoswt s . :
s ]——*m;v k; prket S R l'""'xl { s : "—‘P'_xa i
: r_"\NVMAF—"’ L% i ——MAN—— 78
1 N MFQADN e e e =
7 B G ) B, .
Z Z % 7% Z ///

. Fig. 3- 50

Writing the 1mped¢mce for junction x, and its amphtude, we obtain
(ky +icj0 — My? + kg + icow)ay

-and the slippage terms for the Junctlon x, are k,xy + icowx,; hence the first equation is gnen by ?
(Fey + kg + iy + icow — myeP)ay — kotty — dCowxy = Fy g

Similarly, the equations for junctions z, and x; are ?
(ke + kg + dcow + icgo — Mow?)xy — Koy — iCoury — ka¥g — icgexy = 0

(kg =+ kg +dcgw + e — Mmgo?)xy — Kkzxg — g0 = 0

Substitutiﬁg the given values into thés equations of motion, we get
1420z, — (1+9zy = Fy )
—(l+dz,+ (1 +2)x, — (1+3x3 = 0
—(14+7)z, + (1 +20)z3 = 0




CHAP. 3] ' SEVERAL DEGREES OF FREEDOM . 109 °

Solving by Cramer’s rule, g :
Fo  —(1+9 S0

O (k2D )
07 S ) L (T 20)
Z, =
, @4 20—+ g
= 21 ) (1420 —( )
; 0 —@1Fd . (1+20)
20 Fy, ity
SR o R S B
0 0 1+ 29)
2 =
A4+29 —@ K 00
L~ (A2 —(+ D)
: IO L (2
(1+20) —(1+19) Fo
el A 0
R e I
X3 = - :
; (A+2) —(1+D 0
S+ 1420 —Q 49

A ; 0. =1 ¥4 (1 + 29)
Expand t:he determinants to obtain i ol T B
Fo (L+ 29)(1 + 2i) — Fo (1 + 92

it T OAropE—@F200+92— A F2nE oz
s TP A D20
P2 T W20 — @+ 2D +9° — (3 F 21 +9)°
. Fo(1+19)2 ;
X3 =

.

(14203 — (1 +201 + )2 — (1 +20)(1 + 2
The equation for 2, siinpliﬁes to : A

i Fo (3 —29) - 13K,
x e’ e = e b P S
/ ) (8 + 69) (—3 + 241)
Therefore the numerical value of the amplitude of mi is - .
13F, , :
—— = 0.54F and the phase angle ¢ = tan—1! (24/—3) = —82.9°
Vo + 242 : 5 8
Thu_s the steady state response of the mzisé. my is
xy(t) = 0.54F cos (ot — 82.9°)

Similar expressioné can be found for masses mz and"m;, as )
xy(t) = 0.47F, cos (wt — 45°)
x3(t) =. 0.20F, cos (ot — 26.7°)

THE ORTHOGONALITY PRINCIPLE
36. Show that the orthogonality principle holds for Problem 8, Pége 80.

" For three-degree-of-freedom systems, the orthogonality principle can be written as
myA Ay + maB By + myCiCy = 0
myAdad; + maBaBy + maCaC3 = 0
moAlgdy + meBiB; + myC3Cy; = 0

where m’s are the masses: 4’s, B’s and C's are the amplitud_es of vibration of the systemi.
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The general motlon of the problem 1s :

Vi ony Samy(t) = 4~ }sin (0 +.—/2) + Fsin(V3t+ —/2)
. ' : acz(t); = A}sm(\/_t + ../2) :
et B e §-+-§sm(t+ #/2) + } sin (V3¢ + 7/2)

Substxtutmg the correspondmg amplltudes of vxbrahon into the equations for the principle of
orthogonality, we obtain k

¢ m(&)( 1})+m(:’;)(0)+m( D@ =0
Cm(=H@) + mO)F) + m@ = 0
5% % 7

D@+ m(— %)(-}) + m(&)(«‘)

Hence the* orthogonallty prmclple s compl

i _-Supplementary: Problems

317. Derwe the equatxons of motxon of the system as shown in Flg 3-51 below. The connecting rods are
weightless and restrict motion to the plane of the paper.

Ans. 4m iy + 2key — ke, = 0 oo
4m 0y + 2k, — kog — koy = 0.
4my + 2kog — ko, = 0

" Fig. 3-51 e e B Fig. 3-52

38. The circular homogeneous cylindér of total mass ‘M and radius 2a is suspended by a spring of stiffnes
ki, and is free to rotate with respect to’its center of mass O as shown in Fig. 3-52 above. Deriwt
the .equations of motion. - i

Ans. 3M Ty + (g + o)z, — 2M %y — 6k2x2 —3koxy = 0
(2M + 2m) %y + dkozy + 2kowg — 2M &y — 6Ky = 0
m Ty + koxy — 3k2‘x, + 2kyzy, = 0

39. Calculate the natural frequenc1es of the system Y
as shown in Fig. 3-53. Mnmm“m
Ans. o =40.30v%/m, wy = 1. 47\/k/_ . 77 R

wg = 2.36Vk/m rad/sec - Fig. 3-53

oy
raay




